Vascular diseases are greatly influenced by the hemodynamic parameters and the accuracy of determining these parameters depends on the use of correct boundary conditions. The present work carries out a two-way fluid-structure interaction (FSI) simulation to investigate the effects of outlet pressure boundary conditions on the hemodynamics through the left coronary artery bifurcation with moderate stenosis (50%) in the left anterior descending (LAD) branch. The Carreau viscosity model is employed to characterise the shear-thinning behaviour of blood. The results of the study reveal that the employment of zero pressure at the outlet boundaries significantly overestimates the values of hemodynamic variables like wall shear stress (WSS), and time-averaged wall shear stress (TAWSS) compared with human healthy and pulsatile pressure outlet conditions. However, the difference between these variables is marginally low for human healthy and pulsatile pressure outlets. The oscillatory shear index (OSI) remains the same across all scenarios, indicating independence from the outlet boundary condition. Furthermore, the magnitude of negative axial velocity and pressure drop across the plaque are found to be higher at the zero pressure outlet boundary condition.

Download full-text PDF

Source
http://dx.doi.org/10.1088/2057-1976/ad7030DOI Listing

Publication Analysis

Top Keywords

outlet boundary
12
boundary conditions
12
pressure outlet
12
conditions hemodynamics
8
left coronary
8
coronary artery
8
wall shear
8
shear stress
8
human healthy
8
healthy pulsatile
8

Similar Publications

Study on the mechanism of erosion and wear of elbow pipes by coarse particles in filling slurry.

Sci Rep

December 2024

The Ministry of Education Key Laboratory of High Efficiency Mining and Safety for Metal Mines & School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.

Coarse particles in filling slurry are the primary factor causing wear in filling elbow pipes, and the wear mechanism of these particles on the pipes is influenced by various factors. To study the erosion and wear mechanism of elbow pipes caused by coarse particles, the motion state of coarse particles under different curvature radii, coarse particle gradations, and pipe diameters was investigated using a simulation method based on the coupling of Fluent and EDEM software, grounded in theories of fluid mechanics, rheology, and solid-liquid two-phase flow. The study explored the impact patterns and locations of wear induced by coarse particles on filling elbow pipes.

View Article and Find Full Text PDF

Computational exploration of injection strategies for improving medicine distribution in the liver.

Comput Biol Med

December 2024

Faculty of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran. Electronic address:

Background And Objectives: The liver, a vital metabolic organ, is always susceptible to various diseases that ultimately lead to fibrosis, cirrhosis, acute liver failure, chronic liver failure, and even cancer. Optimal and specific medicine delivery in various diseases, hepatectomy, shunt placement, and other surgical interventions to reduce liver damage, transplantation, optimal preservation, and revival of the donated organ all rely on a complete understanding of perfusion and mass transfer in the liver. This study aims to simulate the computational fluid dynamics of perfusion and the temporal-spatial distribution of a medicine in a healthy liver to evaluate the hemodynamic characteristics of flow and medicine transport with the purpose of more effective liver treatment.

View Article and Find Full Text PDF

We propose a numerical approach to solve a long-standing challenge which is the applicability of the artificial compressibility (AC) formulation for solving the incompressible Navier-Stokes equations at very-low Reynolds numbers. A wide range of engineering applications involves very-low Reynolds number flows in Micro-ElectroMechanical Systems (MEMS) and in the fields of chemical-, agricultural- and biomedical engineering. It is known that the already existing numerical methods using the AC approach fail to provide physically correct results at very-low Reynolds numbers ( ≤ 1).

View Article and Find Full Text PDF

The increasing infertility rate has become a worrying global challenge in recent years. According to the report of the World Health Organization, the male factor is responsible for over half of infertility cases, which includes the lack of desirable characteristics in sperm motility, morphology, and DNA integrity. In recent years, it has been shown that clinical methods including density gradient centrifugation cause damage to sperm DNA and besides being invasive, they are costly and time-consuming.

View Article and Find Full Text PDF

Particle separation and sorting techniques based on microfluidics have found extensive applications and are increasingly gaining prominence. This research presents the design and fabrication of a microfluidic device for separating cells using deterministic lateral displacement (DLD), enabling accuracy and continuity while being size-based. Nevertheless, it remains demanding, to completely reverse the detrimental effects of the boundaries that disturb the fluidic flow in the channel and reduce particle separation efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!