Schizophrenia spectrum disorders (SSD) are debilitating, with auditory verbal hallucinations (AVHs) being a core characteristic. While gray matter volume (GMV) reductions are commonly replicated in SSD populations, the neural basis of AVHs remains unclear. Using previously published data, this study comprises two main analyses, one of GMV dissimilarities between SSD and healthy controls (HC), and one of GMV differences specifically associated with AVHs. Structural brain images from 71 adults with (n = 46) and without (n = 25) SSD were employed. Group differences in GMVs of the cortex, anterior cingulate (ACC), superior temporal gyrus (STG), hippocampi, and thalami were assessed. Additionally, volumes of left Heschl's gyrus (HG) in a subgroup experiencing AVHs (AVH+, n = 23) were compared with those of patients who did not (AVH-, n = 23). SSD patients displayed reduced GMVs of the cortex, ACC, STG, hippocampi, and thalami compared to HC. AVH+ had significantly reduced left HG volume when compared to AVH-. Finally, a right-lateralized ventral prefrontal cluster was found to be uniquely associated with AVH severity. This study corroborates previous findings of GMV reductions in SSD cohorts. Chiefly, our secondary analysis suggests that AVHs are associated with language areas and their contralateral homologues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pscychresns.2024.111863 | DOI Listing |
Geroscience
January 2025
Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea.
Background: Superagers, older adults with exceptional cognitive abilities, show preserved brain structure compared to typical older adults. We investigated whether superagers have biologically younger brains based on their structural integrity.
Methods: A cohort of 153 older adults (aged 61-93) was recruited, with 63 classified as superagers based on superior episodic memory and 90 as typical older adults, of whom 64 were followed up after two years.
J Imaging Inform Med
January 2025
Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.
Analysis of the symmetry of the brain hemispheres at the level of individual structures and dominant tissue features has been the subject of research for many years in the context of improving the effectiveness of imaging methods for the diagnosis of brain tumor, stroke, and Alzheimer's disease, among others. One useful approach is to reliably determine the midline of the brain, which allows comparative analysis of the hemispheres and uncovers information on symmetry/asymmetry in the relevant planes of, for example, CT scans. Therefore, an effective method that is robust to various geometric deformations, artifacts, varying noise characteristics, and natural anatomical variability is sought.
View Article and Find Full Text PDFNat Rev Gastroenterol Hepatol
January 2025
Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
In patients with disorders of gut-brain interaction (DGBI), overlapping non-gastrointestinal conditions such as fibromyalgia, headaches, gynaecological and urological conditions, sleep disturbances and fatigue are common, as is overlap among DGBI in different regions of the gastrointestinal tract. These overlaps strongly influence patient management and outcome. Shared pathophysiology could explain this scenario, but details are not fully understood.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.
Horizontal connections in anterior inferior temporal cortex (ITC) are thought to play an important role in object recognition by integrating information across spatially separated functional columns, but their functional organization remains unclear. Using a combination of optical imaging, electrophysiological recording, and anatomical tracing, we investigated the relationship between stimulus-response maps and patterns of horizontal axon terminals in the macaque ITC. In contrast to the "like-to-like" connectivity observed in the early visual cortex, we found that horizontal axons in ITC do not preferentially connect sites with similar object selectivity.
View Article and Find Full Text PDFSci Data
January 2025
Department of Engineering Technology, University of Houston, Houston, TX, USA.
Functional near-infrared spectroscopy (fNIRS) is an increasingly popular neuroimaging technique that measures cortical hemodynamic activity in a non-invasive and portable fashion. Although the fNIRS community has been successful in disseminating open-source processing tools and a standard file format (SNIRF), reproducible research and sharing of fNIRS data amongst researchers has been hindered by a lack of standards and clarity over how study data should be organized and stored. This problem is not new in neuroimaging, and it became evident years ago with the proliferation of publicly available neuroimaging datasets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!