Highly sensitive SERS nanoplatform based on aptamer and vancomycin for detection of S. aureus and its clinical application.

Talanta

Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China. Electronic address:

Published: December 2024

AI Article Synopsis

  • * Traditional detection methods such as bacterial colony counting and PCR are not sensitive enough for early-stage detection of S. aureus, indicating a need for improved techniques.
  • * A new detection method using a SERS-based nanoplatform was developed, integrating aptamer-conjugated magnetic nanoparticles for enrichment and vancomycin-modified gold nanoparticles for quantitative analysis, achieving a limit of detection of 3.27 CFU/mL.

Article Abstract

Staphylococcus aureus (S. aureus) is the most common pathogen in human purulent infections, which can cause local purulent infections, as well as pneumonia, pseudomembranous enteritis, pericarditis, and even systemic infections. The conventional methods including bacteria colony counting, polymerase chain reaction and enzyme-linked immunosorbent assay can't fully meet the requirement of highly sensitive detection of S. aureus due to their own disadvantages. Therefore, it's an urgent need to develop new platform to detect S. aureus in the early infection stage. In this study, a new surface-enhanced Raman scattering (SERS)-based nanoplatform based on dual-recognition of aptamer (Apt) and vancomycin (Van) was developed for the highly sensitive detection of S. aureus. The SERS nanoplatform consisted of two functional parts: aptamer-conjugated FeO magnetic nanoparticles (FeO-Apt MNPs) for bacteria enrichment and vancomycin modified-Au nanoparticles (Van-Au NPs) as the SERS probes for S. aureus quantitative detection. Upon the target bacteria enrichment, the SERS signals of the supernatant after magnetic separation could be obtained and analyzed under different concentrations of S. aureus. The limit of detection of the proposed assay was found to be 3.27 CFU/mL. We believe that the proposed SERS-based nanoplatform has great potential as a powerful tool in the early detection of specific bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.126691DOI Listing

Publication Analysis

Top Keywords

highly sensitive
12
detection aureus
12
sers nanoplatform
8
nanoplatform based
8
aureus
8
purulent infections
8
sensitive detection
8
sers-based nanoplatform
8
bacteria enrichment
8
detection
6

Similar Publications

Importance: Evolving breast cancer treatments have led to improved outcomes but carry a substantial financial burden. The association of treatment costs with the cost-effectiveness of screening mammography is unknown.

Objective: To determine the cost-effectiveness of population-based breast cancer screening in the context of current treatment standards.

View Article and Find Full Text PDF

NADPH-Independent Fluorescent Probe for Live-Cell Imaging of Heme Oxygenase-1.

ACS Sens

January 2025

Hubei Key Laboratory of Genetic Regulation & Integrative Biology, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, School of Life Sciences, Central China Normal University, Wuhan 430079, China.

Heme oxygenase-1 (HO-1) catalyzes heme degradation on the consumption of NADPH and molecular oxygen. As an inducible enzyme, HO-1 is highly induced in various disease states, including cancer. Currently, two fluorescent probes for HO-1 have been designed based on the catalytic activity of HO-1, in which the probes serve as a substrate, so NADPH is required to enable the detection.

View Article and Find Full Text PDF

High-sensitivity detection of DNA in tongue swab samples.

J Clin Microbiol

December 2024

Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA.

Unlabelled: Tongue swab (TS) sampling combined with quantitative PCR (qPCR) to detect (MTB) DNA is a promising alternative to sputum testing for tuberculosis (TB) diagnosis. In prior studies, the sensitivity of tongue swabbing has usually been lower than sputum. In this study, we evaluated two strategies to improve sensitivity.

View Article and Find Full Text PDF

Visual, sensitive, and selective detection of carcinogenic substances is highly desired in portable health protection and practical medicine production. However, achieving this goal presents significant challenges with the traditional single-mode sensors reported so far, as they have limited sensing mechanisms and provide only a single output signal. Here, we report an effective optical and electrical dual-mode sensor for the visual, sensitive, and selective detection of -nitrosodiethylamine (NDEA), a typical volatile carcinogenic substance, leveraging the synergy of ionic liquid-doped liquid crystals (IL-LC).

View Article and Find Full Text PDF

Simultaneous Detection of Five Infectious Diseases in a Single Strip: Oligo dT-Utilized Lateral Flow Immunoassay.

Anal Chem

January 2025

SB BIOSCIENCE Inc., Room 120, Venture Building, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

The need for accurate and simultaneous diagnosis of multiple respiratory infectious diseases has become increasingly critical due to ongoing viral mutations and the similarity of symptoms among various viruses. Here, we have advanced our detection capabilities by developing a multiplex lateral flow immunoassay (LFA) platform that integrates oligonucleotides and antibodies, enabling the simultaneous detection of five respiratory viruses: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Influenza A (FluA), Influenza B (FluB), Respiratory syncytial virus (RSV), and Adenovirus (ADV), on a single membrane. By applying the oligonucleotide and antibody-conjugated AuNPs, the platform enables highly sensitive and specific detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!