Immune checkpoint blocking (ICB), a tumor treatment based on the mechanism of T-cell activation, has shown high efficacy in clinical trials, but not all patients benefit from it. Immune checkpoint inhibitors (ICIs) do not respond to cold tumors that lack effective T-cell infiltration but respond well to hot tumors with sufficient T-cell infiltration. How to convert an unresponsive cold tumor into a responsive hot tumor is an important topic in cancer immunotherapy. Ferroptosis, a newly discovered immunogenic cell death (ICD) form, has great potential in cancer therapy. In the process of deeply understanding the mechanism of cold tumor formation, it was found that ferroptosis showed a powerful immune-activating effect by improving T-cell infiltration, and the combination of ICB therapy significantly enhanced the anti-tumor efficacy. This paper reviews the complex relationship between T cells and ferroptosis, as well as summarizes the various mechanisms by which ferroptosis enhances T cell infiltration: reactivation of T cells and reversal of immunosuppressive tumor microenvironment (TME), as well as recent advances of ICI in combination with targeted ferroptosis therapies, which provides guidance for better improving the ICB efficacy of cold tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.117298DOI Listing

Publication Analysis

Top Keywords

t-cell infiltration
12
cell infiltration
8
immune checkpoint
8
cold tumors
8
cold tumor
8
ferroptosis
6
infiltration
5
tumor
5
firing "cold"
4
tumors
4

Similar Publications

This report describes a rare case of relapsed multiple myeloma in the gastrointestinal tract with aberrant CD3 expression. Upon admission for acute renal failure, the patient had abnormal computed tomography scan findings of the abdomen and pelvis. Subsequent colonoscopy found numerous polyps and masses.

View Article and Find Full Text PDF

Multiple studies have suggested that psoriasis may increase the risk of atrial fibrillation (AF). However, the molecular and immune mechanisms underlying this association remain unclear. This study initially downloaded gene expression profiles for psoriasis and AF from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

Effective delivery of therapeutic agents for solid tumour treatment is impeded by multiple obstacles, such as aberrant interstitial fluid pressure and high density of the extracellular matrix, which causes impaired penetration to deep avascular tumour tissue that exists in a hypoxic immune cold environment. Only limited tumoricidal effects have been achieved with traditional nanomedicine due to its inefficient penetration and the multiple resistant effects that exist in the tumour microenvironment. Herein, a new chemo-dynamic immunotherapy (CDIT) is proposed based on a transcytosis tumour oxygenator (MnP) with effective chemo-dynamic effects.

View Article and Find Full Text PDF

Background: Myocardial infarction (MI), one of the most serious cardiovascular diseases, is also affected by altered mitochondrial metabolism and immune status, but their crosstalk is poorly understood. In this paper, we use bioinformatics to explore key targets associated with mitochondrial metabolic function in MI.

Methods: The datasets (GSE775, GSE183272 and GSE236374) were from National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) in conjunction with mitochondrial gene data that were downloaded from the MitoCarta 3.

View Article and Find Full Text PDF

This study investigated whether intravenous administration of tumor cells killed by photodynamic therapy (PDT) with 5-aminolevulinic acid (5-ALA) had antitumor effects on distal tumors. Furthermore, a novel extracorporeal blood circulating 5-ALA/PDT system was developed. 5-ALA/PDT- (low or high irradiation) or anticancer drug-treated cells were intravenously administered to rats in a glioma cancer model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!