AI Article Synopsis

  • Molten salts are crucial for energy generation and storage, especially in technologies like concentrated solar power and high-temperature batteries, but their interaction with metals is complex.
  • The study employed advanced imaging techniques to explore how different metal ions and salt compositions affect the morphology and chemical reactions of a specific alloy (Ni-20Cr) in molten salts.
  • Findings reveal that the relationship between how easily ions move and how they react at the metal-salt interface significantly impacts the structural changes in alloys, providing insights for creating protective measures in future molten salt applications.

Article Abstract

Molten salts serve as effective high-temperature heat transfer fluids and thermal storage media used in a wide range of energy generation and storage facilities, including concentrated solar power plants, molten salt reactors and high-temperature batteries. However, at the salt-metal interfaces, a complex interplay of charge-transfer reactions involving various metal ions, generated either as fission products or through corrosion of structural materials, takes place. Simultaneously, there is a mass transport of ions or atoms within the molten salt and the parent alloys. The precise physical and chemical mechanisms leading to the diverse morphological changes in these materials remain unclear. To address this knowledge gap, this work employed a combination of synchrotron X-ray nanotomography and electron microscopy to study the morphological and chemical evolution of Ni-20Cr in molten KCl-MgCl, while considering the influence of metal ions (Ni, Ce, and Eu) and variations in salt composition. Our research suggests that the interplay between interfacial diffusivity and reactivity determines the morphological evolution. The summary of the associated mass transport and reaction processes presented in this work is a step forward toward achieving a fundamental comprehension of the interactions between molten salts and alloys. Overall, the findings offer valuable insights for predicting the diverse chemical and structural alterations experienced by alloys in molten salt environments, thus aiding in the development of protective strategies for future applications involving molten salts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c02049DOI Listing

Publication Analysis

Top Keywords

molten salts
16
molten salt
12
morphological evolution
8
molten
8
alloys molten
8
metal ions
8
mass transport
8
elucidating transition
4
morphological
4
transition morphological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!