A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A scalable blockchain-enabled federated learning architecture for edge computing. | LitMetric

Various deep learning techniques, including blockchain-based approaches, have been explored to unlock the potential of edge data processing and resultant intelligence. However, existing studies often overlook the resource requirements of blockchain consensus processing in typical Internet of Things (IoT) edge network settings. This paper presents our FLCoin approach. Specifically, we propose a novel committee-based method for consensus processing in which committee members are elected via the FL process. Additionally, we employed a two-layer blockchain architecture for federated learning (FL) processing to facilitate the seamless integration of blockchain and FL techniques. Our analysis reveals that the communication overhead remains stable as the network size increases, ensuring the scalability of our blockchain-based FL system. To assess the performance of the proposed method, experiments were conducted using the MNIST dataset to train a standard five-layer CNN model. Our evaluation demonstrated the efficiency of FLCoin. With an increasing number of nodes participating in the model training, the consensus latency remained below 3 s, resulting in a low total training time. Notably, compared with a blockchain-based FL system utilizing PBFT as the consensus protocol, our approach achieved a 90% improvement in communication overhead and a 35% reduction in training time cost. Our approach ensures an efficient and scalable solution, enabling the integration of blockchain and FL into IoT edge networks. The proposed architecture provides a solid foundation for building intelligent IoT services.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329109PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308991PLOS

Publication Analysis

Top Keywords

federated learning
8
consensus processing
8
iot edge
8
integration blockchain
8
communication overhead
8
blockchain-based system
8
training time
8
scalable blockchain-enabled
4
blockchain-enabled federated
4
learning architecture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!