Long noncoding RNA NONHSAT122636.2 attenuates myocardial inflammation and apoptosis in myocarditis.

PLoS One

Department of Pediatrics, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.

Published: August 2024

Objective: The main pathological change of myocarditis is an inflammatory injury of cardiomyocytes. Long noncoding RNAs (lncRNAs) are closely related to inflammation, and our previous study showed that differential expression of lncRNAs is associated with myocarditis. This study aimed to investigate the impact of lncRNAs on the onset of myocarditis.

Methods: RNA expression was measured by quantitative reverse-transcription polymerase chain reaction (RT-qPCR). Lipopolysaccharide (LPS) was used to induce inflammation in human cardiomyocytes (HCMs). The expression of inflammatory cytokines and myocardial injury markers was detected by enzyme-linked immunosorbent assay (ELISA) and RT-qPCR. Cell viability and apoptosis were measured by the cell counting kit-8 assay and flow cytometry. The binding force between lncRNA NONHSAT122636.2 and microRNA miRNA-2110 was detected using the dual-luciferase assay.

Results: NONHSAT122636.2 was dynamically expressed in patients with myocarditis and negatively correlated with inflammation severity. The overexpression of NONHSAT122636.2 improved inflammatory injury in LPS-stimulated HCMs. The study observed that there was a weak binding force between NONHSAT122636.2 and miR-2110.

Conclusion: NONHSAT122636.2 attenuates myocardial inflammation and apoptosis in myocarditis. Additionally, its expression decreases in the peripheral blood of children suffering from myocarditis and in patients who are diagnosed for the first time showing higher diagnostic sensitivity and specificity. This decrease is negatively correlated with the degree of inflammation. Overall, the study suggests that NONHSAT122636.2 can be exploited as a potential diagnostic biomarker for pediatric myocarditis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329147PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307779PLOS

Publication Analysis

Top Keywords

long noncoding
8
nonhsat1226362 attenuates
8
attenuates myocardial
8
myocardial inflammation
8
inflammation apoptosis
8
apoptosis myocarditis
8
inflammatory injury
8
binding force
8
negatively correlated
8
nonhsat1226362
7

Similar Publications

analysis of lncRNA-miRNA-mRNA signatures related to Sorafenib effectiveness in liver cancer cells.

World J Gastroenterol

January 2025

Department of Oncology Surgery, Cell Therapy and Organ Transplantation, Institute of Biomedicine of Seville, Virgen del Rocio University Hospital, Seville 41013, Spain.

Background: Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer with varied incidence and epidemiology worldwide. Sorafenib is still a recommended treatment for a large proportion of patients with advanced HCC. Different patterns of treatment responsiveness have been identified in differentiated hepatoblastoma HepG2 cells and metastatic HCC SNU449 cells.

View Article and Find Full Text PDF

Cancer's epigenetic landscape, a labyrinthine tapestry of molecular modifications, has long captivated researchers with its profound influence on gene expression and cellular fate. This review discusses the intricate mechanisms underlying cancer epigenetics, unraveling the complex interplay between DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. We navigate through the tumultuous seas of epigenetic dysregulation, exploring how these processes conspire to silence tumor suppressors and unleash oncogenic potential.

View Article and Find Full Text PDF

Background: Fractures are the prevalent traumatic conditions encountered in orthopedic practices. The rising incidence of fractures has emerged as a pressing global health concern. Although the majority of individuals with fractures experience complete recovery of bone structure and function, approximately 10% of those with fractures exhibit delayed fracture healing (DFH).

View Article and Find Full Text PDF

Autophagy-related long non-coding RNA MIR210HG plays a therapeutic role in hepatocellular carcinoma.

Discov Oncol

January 2025

Hebei Key Laboratory of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Changan District, Shijiazhuang, 050017, China.

Objective: This study aimed to investigate the role of the autophagy-related long noncoding RNA (lncRNA) MIR210HG in hepatocellular carcinoma and its potential as a therapeutic target.

Methods: LncRNA MIR210HG expression and its correlation with survival outcomes in hepatocellular carcinoma patients were analyzed using data from The Cancer Genome Atlas (TCGA). Kaplan-Meier and Cox regression analyses were conducted to assess survival correlations.

View Article and Find Full Text PDF

Random X-chromosome inactivation is a hallmark of female mammalian somatic cells. This epigenetic mechanism, mediated by the long noncoding RNA Xist, occurs in the early embryo and is stably maintained throughout life, although inactivation is lost during primordial germ cell (PGC) development. Using a combination of single-cell allele-specific RNA sequencing and low-input chromatin profiling on developing mouse PGCs, we provide a detailed map of X-linked gene reactivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!