A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Online Privacy-Preserving EEG Classification by Source-Free Transfer Learning. | LitMetric

Electroencephalogram (EEG) signals play an important role in brain-computer interface (BCI) applications. Recent studies have utilized transfer learning to assist the learning task in the new subject, i.e., target domain, by leveraging beneficial information from previous subjects, i.e., source domains. Nevertheless, EEG signals involve sensitive personal mental and health information. Thus, privacy concern becomes a critical issue. In addition, existing methods mostly assume that a portion of the new subject's data is available and perform alignment or adaptation between the source and target domains. However, in some practical scenarios, new subjects prefer prompt BCI utilization over the time-consuming process of collecting data for calibration and adaptation, which makes the above assumption difficult to hold. To address the above challenges, we propose Online Source-Free Transfer Learning (OSFTL) for privacy-preserving EEG classification. Specifically, the learning procedure contains offline and online stages. At the offline stage, multiple model parameters are obtained based on the EEG samples from multiple source subjects. OSFTL only needs access to these source model parameters to preserve the privacy of the source subjects. At the online stage, a target classifier is trained based on the online sequence of EEG instances. Subsequently, OSFTL learns a weighted combination of the source and target classifiers to obtain the final prediction for each target instance. Moreover, to ensure good transferability, OSFTL dynamically updates the transferred weight of each source domain based on the similarity between each source classifier and the target classifier. Comprehensive experiments on both simulated and real-world applications demonstrate the effectiveness of the proposed method, indicating the potential of OSFTL to facilitate the deployment of BCI applications outside of controlled laboratory settings.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2024.3445115DOI Listing

Publication Analysis

Top Keywords

transfer learning
12
privacy-preserving eeg
8
eeg classification
8
source-free transfer
8
eeg signals
8
bci applications
8
source
8
source target
8
model parameters
8
source subjects
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!