A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-Granularity Part Sampling Attention for Fine-Grained Visual Classification. | LitMetric

Fine-grained visual classification aims to classify similar sub-categories with the challenges of large variations within the same sub-category and high visual similarities between different sub-categories. Recently, methods that extract semantic parts of the discriminative regions have attracted increasing attention. However, most existing methods extract the part features via rectangular bounding boxes by object detection module or attention mechanism, which makes it difficult to capture the rich shape information of objects. In this paper, we propose a novel Multi-Granularity Part Sampling Attention (MPSA) network for fine-grained visual classification. First, a novel multi-granularity part retrospect block is designed to extract the part information of different scales and enhance the high-level feature representation with discriminative part features of different granularities. Then, to extract part features of various shapes at each granularity, we propose part sampling attention, which can sample the implicit semantic parts on the feature maps comprehensively. The proposed part sampling attention not only considers the importance of sampled parts but also adopts the part dropout to reduce the overfitting issue. In addition, we propose a novel multi-granularity fusion method to highlight the foreground features and suppress the background noises with the assistance of the gradient class activation map. Experimental results demonstrate that the proposed MPSA achieves state-of-the-art performance on four commonly used fine-grained visual classification benchmarks. The source code is publicly available at https://github.com/mobulan/MPSA.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2024.3441813DOI Listing

Publication Analysis

Top Keywords

sampling attention
16
fine-grained visual
16
visual classification
16
novel multi-granularity
12
multi-granularity sampling
8
methods extract
8
semantic parts
8
extract features
8
propose novel
8
attention
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!