Dichotomous image segmentation (DIS) with rich fine-grained details within a single image is a challenging task. Despite the plausible results achieved by deep learning-based methods, most of them fail to segment generic objects when the boundary is cluttered with the background. In fact, the gradual decrease in feature map resolution during the encoding stage and the misleading texture clue may be the main issues. To handle these issues, we devise a novel frequency-and scale-aware deep neural network (FSANet) for high-precision DIS. The core of our proposed FSANet is twofold. First, a multimodality fusion (MF) module that integrates the information in spatial and frequency domains is adopted to enhance the representation capability of image features. Second, a collaborative scale fusion module (CSFM) which deviates from the traditional serial structures is introduced to maintain high resolution during the entire feature encoding stage. In the decoder side, we introduce hierarchical context fusion (HCF) and selective feature fusion (SFF) modules to infer the segmentation results from the output features of the CSFM module. We conduct extensive experiments on several benchmark datasets and compare our proposed method with existing state-of-the-art (SOTA) methods. The experimental results demonstrate that our FSANet achieves superior performance both qualitatively and quantitatively. The code will be made available at https://github.com/chasecjg/FSANet.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2024.3426529DOI Listing

Publication Analysis

Top Keywords

dichotomous image
8
image segmentation
8
encoding stage
8
fusion module
8
high-precision dichotomous
4
image
4
segmentation frequency
4
frequency scale
4
scale awareness
4
awareness dichotomous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!