From π-Conjugated Rods to Shape-Persistent Rings, Wheels, and Ladders: The Question of Rigidity.

Acc Chem Res

Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.

Published: September 2024

ConspectusRigid-rod oligomers and polymers are mostly based on (hetero)aromatic rings connected with each other, either directly or via ethynylene or butadiynylene linkers, or by a combination of both structural elements. Although they are much more rigid than vinyl polymers, they exhibit considerable structural flexibility, often more than would be expected merely from their chemical structure. This disparity holds for both linear as well as for cyclic structures. The flexibility of rigid-rod polymers, which is directly observable for defined oligomers of different lengths at the solid-liquid interface by means of scanning-tunneling microscopy, also impacts their optical and electronic properties. The flexibility can be used, for example, to control whether an oligomer with two different fluorescent end-groups emits from either the one or the other. The flexibility of shape-persistent macrocycles also has an impact on the overall thermal stability of mechanically interlocked molecular architectures. However, the degree of flexibility can be reduced when rigid struts are covalently mounted into the inside of the rings, leading to the formation of so-called molecular spoked wheels. The combination of these two elements─rings and rods─stiffens both of them: the ring perimeter is prevented from collapsing and the internal rods from bending. These compounds have been further developed as platform molecules, where three spokes stiffen the ring and together form a tripod-like platform, while a fourth arm points─after adsorption to a solid substrate─above the plane of the molecule. This pillar makes it possible to decouple a functional group at the end of the arm from the surface. Rigidity enhancement by the introduction of rigid spacer elements can also be applied to the case of rigid-rod polymers and is visualized by sophisticated molecular dynamics simulations. In this case, formation of single-stranded oligomers and polymers, and a subsequent zipping reaction to form ladder-like structures, directly allows, by means of single-molecule fluorescence spectroscopy, a comparison of the single- and double-stranded molecules. In particular in the case of the polymers, which can be up to 100 nm in length, the enhancement of rigidity is quite remarkable. Overall, the covalent connection of two or more rigid molecular entities has a self-reinforcing effect: all parts of the molecule gain rigidity. Since overall synthetic yields for such complex high-molecular weight covalently bound shape-persistent structures can still be low, scanning tunneling microscopy and single-molecule fluorescence spectroscopy are the methods of choice for structural analyses. Preliminary results illustrate how these compounds can serve as versatile sources of deterministic single photons on demand, since rigidity also enhances the intramolecular flow of excitation energy, and suggest a range of applications in optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.4c00383DOI Listing

Publication Analysis

Top Keywords

oligomers polymers
8
rigid-rod polymers
8
single-molecule fluorescence
8
fluorescence spectroscopy
8
polymers
6
rigidity
5
flexibility
5
π-conjugated rods
4
rods shape-persistent
4
shape-persistent rings
4

Similar Publications

Plastic waste (PW) presents a significant environmental challenge due to its persistent accumulation and harmful effects on ecosystems. According to the United Nations Environment Program (UNEP), global plastic production in 2024 is estimated to reach approximately 500 million tons. Without effective intervention, most of this plastic is expected to become waste, potentially resulting in billions of tons of accumulated PW by 2060.

View Article and Find Full Text PDF

Group 4 metallocenes are competent catalysts for the oligomerization of higher α-olefins. Among the many chemical and physical variables of importance in the process, one is the choice of cocatalyst (activator). The impact of various activators on the performance of a representative catalyst, (nBuCp)ZrCl, in the oligomerization of 1-octene was thoroughly investigated; in particular, the molecular weight distribution (MWD) of the oligomers was determined by means of high-resolution high performance liquid chromatography (HR-HPLC).

View Article and Find Full Text PDF

Preparation, Optical, and Heat Resistance Properties of Phenyl-Modified Silicone Gel.

Polymers (Basel)

December 2024

Key Laboratory of Organosilicon Chemistry and Material Technology, College of Material, Chemistry and Chemical Engineering, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.

A series of Si-H- or Si-Vi-terminated, branched and linear oligomers containing MeSiO segments were prepared by equilibrium polymerization or non-equilibrium polymerization initiated by living anions, respectively. These oligomers were used to improve the defects of concentrated crosslinking points and the high hardness of crosslinked products when using phenyltris(dimethylsiloxy)silane or 1,1,5,5-tetramethyl-3,3-diphenyl trisiloxane as crosslinking agents in the preparation of silicone gel. NMR, FT-IR, and GPC characterized the structure and molecular weight information of the prepared oligomers.

View Article and Find Full Text PDF

Chitin is the second most abundant biopolymer in nature after cellulose and is composed of N-acetylglucosamine (GlcNAc) connected via β(1 → 4)-glycosidic bonds. Despite its prominence in nature and diverse roles in pharmaceutical and food technological applications, there is still a need to develop methods to study structure and function of chitin and its corresponding oligomers. Efforts have been made to analyse chitin oligomers by NMR spectroscopy, but spectral overlap has prevented any differentiation between the interior residues.

View Article and Find Full Text PDF

In this paper, we investigated the efficient metal-free phosphorus-nitrogen (PN) catalyst and used the PN catalyst to degrade waste PU with two-component binary mixed alcohols as the alcohol solvent. We examined the effects of reaction temperature, time, and other factors on the hydroxyl value and viscosity of the degradation products; focused on the changing rules of the hydroxyl value, viscosity, and molecular weight of polyols recovered from degradation products with different dosages of the metal-free PN catalyst; and determined the optimal experimental conditions of reaction temperature 180 °C, reaction time 3 h, and PN dosage 0.08%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!