Ultrathin two-dimensional (2D) metal-organic nanosheets (MONs) have attracted continued attention in the field of advanced functional materials. Their nanoscale thickness, high surface-to-volume ratio, and abundant accessible active sites, are superior advantages compared with their 3D bulk counterparts. Bioinspired molecular scalpel strategy is a promising method for the creation of 2D MONs, and may solve the current shortcomings of MONs synthesis. This review aims to provide a state-of-the-art overview of molecular scalpel strategies and share the results of current development to provide a better solution for MONs synthesis. Different types of molecular scalpel strategies have been systematically summarized. Both mechanisms, advantages and limitations of multiform molecular scalpel strategies have been discussed. Besides, the challenges to be overcome and the question to be solved are also introduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202402444 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!