Larger fusion experiments require long beam paths for laser diagnostics, which requires mechanical stability and measures to deal with remaining alignment variations. At the same time, due to technical and organizational boundary conditions, calibrations become challenging. The current mid-sized experiments face the same issues, yet on a smaller scale, which makes them ideal testing environments for novel calibration methods, since a comparison with the established best practices is still possible. At the stellarator Wendelstein 7-X, the calibration and operation of the Thomson scattering diagnostic is hampered by beam displacements, coating of windows during operation, and access restrictions while the superconducting coils are active. New calibration techniques were developed to improve the profile quality and reduce calibration time. While positional variations of the laser beam have to be minimized, the remaining displacements can be accounted for during the absolute calibration. An in situ spectral calibration has been developed based on Rayleigh scattering, which calibrates the whole diagnostic, including observation windows. In addition, a less accurate but faster method has been developed, which utilizes stray-light of a tunable OPO to perform spectral calibration within minutes and does not require torus hall access. Finally, a workflow has been established to consider finite linewidths of the calibration source in the spectral calibration. While these methods will be used at W7-X to complement existing calibration techniques, they may also solve some of the aforementioned issues expected for even larger and nuclear experiments, where access restrictions are stringent and calibration becomes even more demanding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0219161 | DOI Listing |
Circ Cardiovasc Interv
January 2025
Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, Canada. (A.H., J.J., S.O., K.M., J.A.L., P.B., D.A.W., S.L.S., J.G.W., J.S.).
Background: Transcatheter heart valve (THV) underexpansion after transcatheter aortic valve replacement may be associated with worse outcomes. THV expansion can be assessed fluoroscopically using a pigtail for calibration; however, the accuracy of this technique specific to transcatheter aortic valve replacement is unknown. We assessed the accuracy and reproducibility of a novel fluoroscopic method to assess THV expansion using the THV commissural post for calibration.
View Article and Find Full Text PDFAccurate survival prediction of patients with long-bone metastases is challenging, but important for optimizing treatment. The Skeletal Oncology Research Group (SORG) machine learning algorithm (MLA) has been previously developed and internally validated to predict 90-day and 1-year survival. External validation showed promise in the United States and Taiwan.
View Article and Find Full Text PDFFront Oncol
January 2025
Medical Imaging Center, The First Hospital of Kunming, Kunming, China.
Objective: The invasiveness of pituitary neuroendocrine tumor is an important basis for formulating individualized treatment plans and improving the prognosis of patients. Radiomics can predict invasiveness preoperatively. To investigate the value of multiparameter magnetic resonance imaging (mpMRI) radiomics in predicting pituitary neuroendocrine tumor invasion into the cavernous sinus (CS) before surgery.
View Article and Find Full Text PDFInt J Cardiol Heart Vasc
February 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
Atrial fibrillation (AF) is the most common tachyarrhythmia and seriously affects human health. Key targets of AF bioinformatics analysis can help to better understand the pathogenesis of AF and develop therapeutic targets. The left atrial appendage tissue of 20 patients with AF and 10 patients with sinus rhythm were collected for sequencing, and the expression data of the atrial tissue were obtained.
View Article and Find Full Text PDFEcol Evol
January 2025
Instituto Milenio de Oceanografía (IMO) Universidad de Concepción Concepción Chile.
Mechanisms driving the spatial and temporal patterns of species distribution in the Earth's largest habitat, the deep ocean, remain largely enigmatic. The late Miocene to the Pliocene (~23-2.58 Ma) is a period that was marked by significant geological, climatic, and oceanographic changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!