A 44-cm3 physics package for the high-performance pulsed optically pumped atomic clock.

Rev Sci Instrum

Key Laboratory of Time Reference and Applications, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China.

Published: August 2024

The pulsed optically pumped (POP) atomic clock has demonstrated unexpected performance in terms of frequency stability and drift. However, it remains a huge challenge to make this type of atomic clock more compact. Herein, we report the design of a miniaturized physics package, which is equipped with a magnetron microwave cavity holding a vapor cell of 1.3 cm internal diameter. The Zeeman transition spectrum reveals that the microwave cavity resonates in TE011-like mode. Based on a low-noise testbed, we also quantitatively analyze the relaxation time, linewidth, and noise sources of the resulting POP atomic clock. The population and coherence relaxation time are measured to be 3.16(0.16) and 2.97(0.03) ms under the temperature of 333 K, which are compatible well with the theoretical calculation. The Ramsey signal shows a contrast of 35% and a linewidth of 192 Hz. The total volume of the physics package is about 44 cm3, including a layer of magnetic shielding. The short-term frequency stability is measured to be 4.8 × 10-13τ-1/2 (where τ is the averaging time), which is mainly limited by the relative intensity noise of the laser system.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0219868DOI Listing

Publication Analysis

Top Keywords

atomic clock
16
physics package
12
pulsed optically
8
optically pumped
8
pop atomic
8
frequency stability
8
microwave cavity
8
relaxation time
8
44-cm3 physics
4
package high-performance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!