AI Article Synopsis

  • Anti-PD1/L1 immunotherapy has shown promise when combined with chemotherapy for advanced biliary tract cancer (BTC), yet no predictive biomarker has been identified for its effectiveness.
  • Researchers analyzed tumor-infiltrating lymphocytes (TIL) using AI-powered immune phenotype (AI-IP) analysis on tissue samples from 339 advanced BTC patients undergoing anti-PD1 treatment.
  • The study found that patients with an "inflamed" immune phenotype (high TIL) had significantly better treatment responses and survival rates compared to those with "noninflamed" phenotypes, suggesting AI-IP could be a useful predictor of outcomes for anti-PD1 therapy in BTC.

Article Abstract

Purpose: Recently, anti-programmed cell death-1/anti-programmed cell death ligand-1 (anti-PD1/L1) immunotherapy has been demonstrated for its efficacy when combined with cytotoxic chemotherapy in randomized phase 3 trials for advanced biliary tract cancer (BTC). However, no biomarker predictive of benefit has been established for anti-PD1/L1 in BTC. Here, we evaluated tumor-infiltrating lymphocytes (TIL) using artificial intelligence-powered immune phenotype (AI-IP) analysis in advanced BTC treated with anti-PD1.

Experimental Design: Pretreatment hematoxylin and eosin (H&E)-stained whole-slide images from 339 patients with advanced BTC who received anti-PD1 as second-line treatment or beyond, were employed for AI-IP analysis and correlative analysis between AI-IP and efficacy outcomes with anti-PD1. Next, data and images of the BTC cohort from The Cancer Genome Atlas (TCGA) were additionally analyzed to evaluate the transcriptomic and mutational characteristics of various AI-IP in BTC.

Results: Overall, AI-IP were classified as inflamed [high intratumoral TIL (iTIL)] in 40 patients (11.8%), immune-excluded (low iTIL and high stromal TIL) in 167 patients (49.3%), and immune-desert (low TIL overall) in 132 patients (38.9%). The inflamed IP group showed a substantially higher overall response rate compared with the noninflamed IP groups (27.5% vs. 7.7%, P < 0.001). Median overall survival and progression-free survival were significantly longer in the inflamed IP group than in the noninflamed IP group (OS, 12.6 vs. 5.1 months; P = 0.002; PFS, 4.5 vs. 1.9 months; P < 0.001). In the TCGA cohort analysis, the inflamed IP showed increased cytolytic activity scores and IFNγ signature compared with the noninflamed IP.

Conclusions: AI-IP based on spatial TIL analysis was effective in predicting the efficacy outcomes in patients with BTC treated with anti-PD1 therapy. Further validation is necessary in the context of anti-PD1/L1 plus gemcitabine-cisplatin.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-24-1265DOI Listing

Publication Analysis

Top Keywords

artificial intelligence-powered
8
spatial analysis
8
tumor-infiltrating lymphocytes
8
biliary tract
8
tract cancer
8
ai-ip analysis
8
advanced btc
8
btc treated
8
efficacy outcomes
8
inflamed group
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!