A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Type-I Collagen Polypeptide-Based Composite Nanofiber Membranes for Fast and Efficient Bone Regeneration. | LitMetric

AI Article Synopsis

  • The treatment of bone defects has traditionally relied on allogeneic and autologous bone transplants, which both have limitations, prompting the exploration of bone tissue engineering using various scaffold materials.
  • Recent advancements in scaffolds have faced challenges like biotoxicity and inflammation that impair their effectiveness in promoting bone regeneration.
  • This study developed a new type of collagen-based nanofiber membrane that, in experiments, showed low toxicity and significantly enhanced bone cell differentiation and regeneration, leading to complete healing of bone defects in about two months.

Article Abstract

The clinical treatment of bone defects includes allogeneic bone transplantation and autologous bone transplantation. However, they all have their own limitations, and the scope of application is limited. In recent years, bone tissue engineering scaffolds based on a variety of materials have been well developed and achieved good bone regeneration ability. However, most scaffold materials always face problems such as high biotoxicity, leading to inflammation and poor bioactivity, which limits the bone regeneration effect and prolongs the bone regeneration time. In our work, we prepared hydroxyapatite, erythropoietin (EPO), and osteogenic growth peptide (OGP) codoped type-I collagen (Col I) polypeptide nanofiber membranes (NFMs) by electrostatic spinning. In cell experiments, the composite NFMs had low cytotoxicity and promoted osteogenic differentiation of rat bone marrow mesenchymal stem cells. Quantitative real-time polymerase chain reaction and alkaline phosphatase staining confirmed the high expression of osteogenic genes, and alizarin red S staining directly confirmed the appearance of calcium nodules. In animal experiments, the loaded hydroxyapatite formed multiple independent mineralization centers in the defect center. Under the promotion of Col I, EPO, and OGP, the bone continued to grow along the mineralization centers as well as inward the defect edge, and the bone defect completely regenerated in about two months. The hematological and histological analyses proved the safety of the experiments. This kind of design to promote bone regeneration by simulating bone composition, introducing mineralization center and signal molecules, can shorten repair time, improve repair effect, and has good practical prospects in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.4c00669DOI Listing

Publication Analysis

Top Keywords

bone regeneration
20
bone
13
type-i collagen
8
nanofiber membranes
8
bone transplantation
8
mineralization centers
8
regeneration
5
collagen polypeptide-based
4
polypeptide-based composite
4
composite nanofiber
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!