Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Each year, (Ngo) causes over 1.5 million new infections in the United States, and >87 million worldwide. The absence of a vaccine for preventing gonorrhea, the rapid emergence of multidrug-resistant and extremely drug-resistant Ngo strains, and the limited number of antibiotics available for treating gonorrhea underscore the importance of developing new modalities for addressing Ngo infection. Here, we describe DNA-based microbicides that kill Ngo but not commensals. Previously, we showed that Ngo is killed when it takes up differentially methylated DNA with homology to its genome. We exploited this Achilles heel to develop a new class of microbicides for preventing Ngo infection. These microbicides consist of DNA molecules with specific sequences and a methylation pattern different from Ngo DNA. These DNAs kill low-passage and antibiotic-resistant clinical isolates with high efficiency but leave commensals unharmed. Equally important, the DNAs are equally effective against Ngo whether they are in buffered media or personal lubricants. These findings illustrate the potential of this new class of practical, low-cost, self-administered DNA-based microbicides for preventing Ngo transmission during sexual intercourse.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459949 | PMC |
http://dx.doi.org/10.1128/aac.00794-24 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!