AI Article Synopsis

  • The study analyzed how different forms of dietary manganese (Mn) affected liver fat metabolism in 42-day-old broiler chickens.
  • Supplementation with Mn increased its levels in the plasma and liver, boosted fat breakdown enzyme activity, and improved gene expression related to fat metabolism.
  • Results showed that adding manganese reduced fat accumulation in the liver by inhibiting certain enzymes and genes while enhancing fat breakdown, regardless of the type of Mn used (sulfate vs. proteinate).

Article Abstract

This study aimed to characterize the effects of different dietary forms of supplemental manganese (Mn) on hepatic lipid deposition, gene expression, and enzyme activity in liver fat metabolism in 42-d-old broiler chickens. In total 420 one-day-old Arbor Acres (AA) broilers (rooster:hen = 1:1) were assigned randomly based on body weight and sex to 1 of 6 treatments (10 replicate cages per treatment and 7 broilers per replicate cage) in a completely randomized design using a 2 (sex) × 3 (diet) factorial arrangement. The 3 diets were basal control diets without Mn supplementation and basal diets supplemented with either Mn sulfate or Mn proteinate. No sex × diet interactions were observed in any of the measured indexes; thus, the effect of diet alone was presented in this study. Dietary Mn supplementation increased Mn content in the plasma and liver, adipose triglyceride lipase (ATGL) activity, and ATGL mRNA and its protein expression in the liver by 5.3% to 24.0% (P < 0.05), but reduced plasma triglyceride (TG), total cholesterol, and low-density lipoprotein (LDL-C) levels, liver TG content, fatty acid synthase (FAS) and malic enzyme (ME) activities, mRNA expression of sterol-regulatory element-binding protein 1 (SREBP1), FAS, stearoyl-coA desaturase (SCD), and ME, as well as the protein expression of SREBP1 and SCD in the liver by 5.5% to 22.8% (P < 0.05). No differences were observed between the 2 Mn sources in all of the determined parameters. Therefore, it was concluded that dietary Mn supplementation, regardless of Mn source, decreased hepatic lipid accumulation in broilers by inhibiting SREBP1 and SCD expression, FAS and ME activities, and enhancing ATGL expression and activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391614PMC
http://dx.doi.org/10.1093/jas/skae235DOI Listing

Publication Analysis

Top Keywords

hepatic lipid
8
lipid deposition
8
gene expression
8
expression enzyme
8
enzyme activity
8
dietary manganese
4
manganese supplementation
4
supplementation decreases
4
decreases hepatic
4
deposition regulating
4

Similar Publications

There is a complex interplay between the gut microbes, liver, and central nervous system, a gut-liver-brain axis, where the brain impacts intestinal and hepatic function while the gut and liver can impact cognition and mental status. Dysregulation of this axis can be seen in numerous diseases. Hepatic encephalopathy, a consequence of cirrhosis, is perhaps the best studied perturbation of this system.

View Article and Find Full Text PDF

Purpose: Acute fatty liver of pregnancy (AFLP) is a severe complication that can occur in the third trimester or immediately postpartum, characterized by rapid hepatic failure. This study aims to explore the changes in portal vein blood flow velocity and liver function during pregnancy, which may assist in the early diagnosis and management of AFLP.

Methods: This longitudinal study was conducted at a tertiary healthcare center with participants recruited from routine antenatal check-ups.

View Article and Find Full Text PDF

Excess lipid droplet (LD) accumulation is associated with several pathological states, including Alzheimer's disease (AD). However, the mechanism(s) by which changes in LD composition and dynamics contribute to pathophysiology of these disorders remains unclear. Apolipoprotein E (ApoE) is a droplet associated protein with a common risk variant (E4) that confers the largest increase in genetic risk for late-onset AD.

View Article and Find Full Text PDF

Unlabelled: Genome- and epigenome-wide association studies have associated variants and methylation status of carnitine palmitoyltransferase 1a (CPT1a) to reductions in very low-density lipoprotein (VLDL) cholesterol and triglyceride levels. We report significant associations between the presence of SNPs and reductions in plasma cholesterol, as well as positive associations between hepatic Cpt1a expression and plasma cholesterol levels across inbred mouse strains. Mechanistic studies show that both wild type and human apolipoprotein B100 (apoB)-transgenic mice with liver-specific deletion of (LKO) display lower circulating apoB levels consistent with reduced LDL-cholesterol (LDL-C) and LDL particle number.

View Article and Find Full Text PDF

Aim: To compare the respective clinical and pathologic features of antimitochondrial antibodies-negative (AMA-negative) primary biliary cirrhosis (PBC) and cholestatic type drug-induced liver injury (DILI) for clinical differential diagnosis.

Patients And Methods: Clinical data from 23 patients with AMA-negative PBC and 39 patients with cholestatic type DILI, treated at our hospital between January 2013 and January 2024, were collected and retrospectively analyzed.

Results: The cholestatic type DILI group exhibited a higher incidence of malaise and abdominal pain compared with the AMA-negative PBC group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!