The structure of calcium aluminosilicate glasses (CaO)x(Al2O3)y(SiO2)1-x-y with the near tectosilicate compositions x ≃ 0.19 and 1 - x - y ≃ 0.61 or x ≃ 0.26 and 1 - x - y ≃ 0.49 was investigated by in situ high-pressure neutron diffraction and 27Al nuclear magnetic resonance (NMR) spectroscopy. The results show three distinct pressure regimes for the transformation of the aluminum coordination environment from tetrahedral to octahedral, which map onto the deformations observed in the production of permanently densified materials. The oxygen packing fraction serves as a marker for signaling a change to the coordination number of the network forming motifs. For a wide variety of permanently densified aluminosilicates, the aluminum speciation shares a common dependence on the reduced density ρ' = ρ/ρ0, where ρ is the density and ρ0 is its value for the uncompressed material. The observed increase in the Al-O coordination number with ρ' originates primarily from the formation of six-coordinated aluminum Al(VI) species, the fraction of which increases rapidly beyond a threshold ρthr'∼ 1.1. The findings are combined to produce a self-consistent model for pressure-induced structural change. Provided the glass network is depolymerized, one-coordinated non-bridging oxygen atoms are consumed to produce two-coordinated bridging oxygen atoms, thus increasing the network connectivity in accordance with the results from 17O NMR experiments. Otherwise, three-coordinated oxygen atoms or triclusters appear, and their fraction is quantified by reference to the mean coordination number of the silicon plus aluminum species. The impact of treating Al(VI) as a network modifier is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0218574DOI Listing

Publication Analysis

Top Keywords

coordination number
12
oxygen atoms
12
aluminum coordination
8
coordination environment
8
permanently densified
8
coordination
5
network
5
transformations aluminum
4
environment network
4
network polymerization
4

Similar Publications

Background: With the accelerated development of the aging trend in Chinese society, the aging problem has become one of the key factors affecting sustainable economic and social development. Given the importance of controlling carbon emissions for achieving global climate goals and China's economic transformation, studying the spatial and temporal effects of population aging on carbon emissions and their pathways of action is of great significance for formulating low-carbon development strategies adapted to an aging society.

Objective: This paper aims to explore the spatial-temporal effects of population aging on carbon emissions, identify the key pathways through which aging affects carbon emissions, and further explore the variability of these effects across different regions.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

TissueVision Inc., Newton, MA, USA.

Background: Alzheimer's Disease (AD) has a strong spatial-temporal component to its progression, where different brain regions are affected by amyloid-beta (Aβ) plaque deposition at varying time points and in distinct cell types. Standard imaging and analysis platforms can neglect these details, as they lack the ability to pair high-yield whole-brain imaging with region-specific or high-resolution analysis. Here we describe a novel high-throughput whole-brain imaging pipeline to quantitatively track plaque progression as a function of brain region across time, while also producing indexed tissue sections for secondary staining and analysis that can be registered back to the original brain image.

View Article and Find Full Text PDF
Article Synopsis
  • Solid-state polymer electrolytes (SPEs) are gaining attention for sodium metal batteries (SMBs) due to their flexibility and lower interfacial resistance, but they struggle with sodium ion conductivity and unstable interfaces.
  • A novel composite electrolyte called PPNM is created by integrating a 3D copper metal organic framework (Cu-MOF) with polyacrylonitrile (PAN) fibers and polyethylene oxide (PEO), enhancing ionic conductivity and sodium ion movement.
  • The improved stability and performance of the PPNM electrolyte lead to strong cycling results for Na3V2(PO4)3@C/PPNM/Na full cells, making it a promising strategy for advancing solid-state SMB technology.
View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is a complex neurodegenerative disease characterized by multiple etiologies that remains without a cure. Diabetes, dyslipidemia, hypertension, and inflammation are well-known risk factors for AD, and FDA-approved therapeutics for these conditions have been associated with a reduced risk of developing AD. This study aims to evaluate the impact of diabetes medications (DBMD), lipid-lowering (LIPL), antihypertensive (AHTN), and non-steroidal anti-inflammatory (NSD) therapeutics, alone or combined, on cognitive performance in an AD population.

View Article and Find Full Text PDF

Background: Approximately half of Medicare beneficiaries enroll in Medicare Advantage (MA) plans. Unlike Traditional Medicare (TM), MA plans coordinate patient care through physician networks and care practices, often relying on Primary Care Providers (PCPs). PCPs also play an important role in diagnosing dementia; the majority of persons living with dementia are diagnosed by PCPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!