The earliest evidence of complex macroscopic life on Earth is preserved in Ediacaran-aged siliciclastic deposits as three-dimensional casts and molds, known as Ediacara-style preservation. The mechanisms that led to this extraordinary preservation of soft-bodied organisms in fine- to medium-grained sandstones have been extensively debated. Ediacara-style fossilization is recorded in a variety of sedimentary facies characterized by clean quartzose sandstones (as in the eponymous Ediacara Member) as well as less compositionally mature, clay-rich sandstones and heterolithic siliciclastic deposits. To investigate this preservational process, we conducted experiments using different mineral substrates (quartzose sand, kaolinite, and iron oxides), a variety of soft-bodied organisms (microalgae, cyanobacteria, marine invertebrates), and a range of estimates for Ediacaran seawater dissolved silica (DSi) levels (0.5-2.0 mM). These experiments collectively yielded extensive amorphous silica and authigenic clay coatings on the surfaces of organisms and in intergranular pore spaces surrounding organic substrates. This was accompanied by a progressive drawdown of the DSi concentration of the experimental solutions. These results provide evidence that soft tissues can be rapidly preserved by silicate minerals precipitated under variable substrate compositions and a wide range of predicted scenarios for Ediacaran seawater DSi concentrations. These observations suggest plausible mechanisms explaining how interactions between sediments, organic substrates, and seawater DSi played a significant role in the fossilization of the first complex ecosystems on Earth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gbi.12615 | DOI Listing |
Geobiology
August 2024
Department of Earth & Planetary Sciences, Yale University, New Haven, Connecticut, USA.
The earliest evidence of complex macroscopic life on Earth is preserved in Ediacaran-aged siliciclastic deposits as three-dimensional casts and molds, known as Ediacara-style preservation. The mechanisms that led to this extraordinary preservation of soft-bodied organisms in fine- to medium-grained sandstones have been extensively debated. Ediacara-style fossilization is recorded in a variety of sedimentary facies characterized by clean quartzose sandstones (as in the eponymous Ediacara Member) as well as less compositionally mature, clay-rich sandstones and heterolithic siliciclastic deposits.
View Article and Find Full Text PDFSci Rep
May 2022
Department of Earth and Planetary Sciences, Yale University, New Haven, CT, 06511, USA.
Earth's earliest fossils of complex macroscopic life are recorded in Ediacaran-aged siliciclastic deposits as exceptionally well-preserved three-dimensional casts and molds, known as "Ediacara-style" preservation. Ediacara-style fossil assemblages commonly include both macrofossils of the enigmatic Ediacara Biota and associated textural impressions attributed to microbial matgrounds that were integral to the ecology of Ediacara communities. Here, we use an experimental approach to interrogate to what extent the presence of mat-forming microorganisms was likewise critical to the Ediacara-style fossilization of these soft-bodied organisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!