On-Demand Picoliter-Level-Droplet Inkjet Printing for Micro Fabrication and Functional Applications.

Small

Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China.

Published: November 2024

With the advent of Internet of Things (IoTs) and wearable devices, manufacturing requirements have shifted toward miniaturization, flexibility, environmentalization, and customization. Inkjet printing, as a non-contact picoliter-level droplet printing technology, can achieve material deposition at the microscopic level, helping to achieve high resolution and high precision patterned design. Meanwhile, inkjet printing has the advantages of simple process, high printing efficiency, mask-free digital printing, and direct pattern deposition, and is gradually emerging as a promising technology to meet such new requirements. However, there is a long way to go in constructing functional materials and emerging devices due to the uncommercialized ink materials, complicated film-forming process, and geometrically/functionally mismatched interface, limiting film quality and device applications. Herein, recent developments in working mechanisms, functional ink systems, droplet ejection and flight process, droplet drying process, as well as emerging multifunctional and intelligence applications including optics, electronics, sensors, and energy storage and conversion devices is reviewed. Finally, it is also highlight some of the critical challenges and research opportunities. The review is anticipated to provide a systematic comprehension and valuable insights for inkjet printing, thereby facilitating the advancement of their emerging applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202402638DOI Listing

Publication Analysis

Top Keywords

inkjet printing
16
printing
7
on-demand picoliter-level-droplet
4
inkjet
4
picoliter-level-droplet inkjet
4
printing micro
4
micro fabrication
4
fabrication functional
4
applications
4
functional applications
4

Similar Publications

Inkjet-Printed Graphene-PEDOT:PSS Decorated with Sparked ZnO Nanoparticles for Application in Acetone Detection at Room Temperature.

Polymers (Basel)

December 2024

Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nanglinchi Road, Thungmahamek, Sathorn, Bangkok 10120, Thailand.

This work presents a simple process for the development of flexible acetone gas sensors based on zinc oxide/graphene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate). The gas sensors were prepared by inkjet printing, which was followed by a metal sparking process involving different sparking times. The successful decoration of ZnO nanoparticles (average size ~19.

View Article and Find Full Text PDF

Understanding the droplet coalescence/merging is vital for many areas of microfluidics such as biochemical reactors, drug delivery, inkjet printing, oil recovery, etc. In the present study, we carried out numerical simulations of two magnetic droplets suspended in a nonmagnetic fluid matrix and coalescing under the influence of an external magnetic field. We observed that the applied magnetic field played a key role in the merging dynamics of the magnetic droplets.

View Article and Find Full Text PDF

Fully π-conjugated polymers consisting of plane and rigid aromatic units present a fantastic optoelectronic property, a promising candidate for printed and flexible optoelectronic devices. However, obtaining high-performance conjugated polymers with an excellent intrinsically flexible and printable capacity is a great challenge due to their inherent coffee-ring effect and brittle properties. Here, we report an asymmetric substitution strategy to improve the printable and stretchable properties of deep-blue light-emitting conjugated polymers with a strong inter-aggregate capillary interaction for flexible printed polymer light-emitting diodes.

View Article and Find Full Text PDF

Additive manufacturing (AM) of magnetic materials has recently attracted increasing interest for various applications but is often limited by the high cost and supply chain risks of rare-earth-element (REE) magnetic precursors. Recent advances in nanomanufacturing have enabled the development of rare-earth-free (REF) magnetic materials, such as spinel ferrites, hexaferrites, MnAl, MnBi, Alnico, FePt, and iron oxides/nitrides, which offer promising alternatives for printing high-performance magnetic devices. This review provides a detailed overview of the latest developments in REF magnetic materials, covering both synthesis strategies of REF magnetic materials/nanomaterials and their integration into AM processes.

View Article and Find Full Text PDF

In recent years, inkjet digital printing technology has become a popular research area. This paper focuses on the spreading behavior of single ink drops on coated paper in digital inkjet printing. It explores the impact of ink drop spreading on monochromatic spectral reflectance, providing new insights for the theoretical development of spectral prediction models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!