Quantum information theory provides a powerful toolbox of descriptors that characterize many-electron systems based on quantum information patterns between open quantum systems. Despite the wealth of insights gained in the condensed matter community, the use of these descriptors to study interactions between atoms in a molecule remains limited. In this study, we develop a quantum information framework for molecules that characterizes the quantum information patterns between quantum atoms as defined in the Quantum Theory of Atoms in Molecules. We show that quantum information analyses capture key properties of quantum atoms and how they interact with their molecular environment. Additionally, we show that the presence of bond critical points can remain invariant despite large changes in the quantum information patterns between the quantum atoms. Our findings indicate that quantum information theory can shed a new light on molecular electronic structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202400819 | DOI Listing |
Sci Rep
January 2025
College of Electrical and Information Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, People's Republic of China.
The development and modification of grouting materials constitute crucial factors influencing the effectiveness of grouting. Given the pivotal role of water in the hydration of cement-based composite materials and construction processes, this study proposes an exploratory approach using green, economical magnetized water technology to enhance the performance of cement grouts. The research systematically investigates the effects of magnetized water on the fundamental grouting properties (stability, rheological behavior, and stone body strength) of cement grouts, prepared under varying magnetization conditions (including magnetic intensity, water flow speed, and cycle times).
View Article and Find Full Text PDFSci Adv
January 2025
Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
Excitons, which are Coulomb bound electron-hole pairs, are composite bosons and thus at low temperature can form a superfluid state with a single well-defined amplitude and phase. We directly image this macroscopic exciton superfluid state in an hBN-separated MoSe-WSe heterostructure. At high density, we identify quasi-long-range order over the entire active area of our sample, through spatially resolved coherence measurements.
View Article and Find Full Text PDFChaos
January 2025
School of Mechanical and Power Engineering, Zhengzhou University, Science Road 100, 450001 Zhengzhou, China.
In this paper, the complex and dynamically rich distribution of stable phases in the well-known discrete Ikeda map is studied in detail. The unfolding patterns of these stable phases are described through three complementary stability diagrams: the Lyapunov stability diagram, the isoperiod stability diagram, and the isospike stability diagram. The adding-doubling complexification cascade and fascinating non-quantum chiral pairs are discovered, marking the first report of such structures in discrete mapping.
View Article and Find Full Text PDFIUCrJ
January 2025
Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw, 02-093, Poland.
X-ray diffraction (XRD) has evolved significantly since its inception, becoming a crucial tool for material structure characterization. Advancements in theory, experimental techniques, diffractometers and detection technology have led to the acquisition of highly accurate diffraction patterns, surpassing previous expectations. Extracting comprehensive information from these patterns necessitates different models due to the influence of both electron density and thermal motion on diffracted beam intensity.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
We examine nucleosynthesis in the ejecta of black-hole-neutron-star mergers based on the results of long-term neutrino-radiation-magnetohydrodynamics simulations for the first time. We find that the combination of dynamical and postmerger ejecta reproduces a solarlike r-process pattern. Moreover, the enhancement level of actinides is highly sensitive to the distribution of both the electron fraction and the velocity of the dynamical ejecta.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!