Population-level analyses are inherently complex due to a myriad of latent confounding effects that underlie the interdisciplinary topics of research interest. Despite the mounting demand for generative population models, the limited generalizability to underrepresented groups hinders their widespread adoption in downstream applications. Interpretability and reliability are essential for clinicians and policymakers, while accuracy and precision are prioritized from an engineering standpoint. Thus, in domains such as population neuroscience, the challenge lies in determining a suitable approach to model population data effectively. Notably, the traditional strata-agnostic nature of existing methods in this field reveals a pertinent gap in quantitative techniques that directly capture major sources of population stratification. The emergence of population-scale cohorts, like the Adolescent Brain Cognitive Development (ABCD) Study, provides unparalleled opportunities to explore and characterize neurobehavioral and sociodemographic relationships comprehensively. We propose diversity-aware population modeling, a framework poised to standardize systematic incorporation of diverse attributes, structured with respect to intrinsic population stratification to obtain holistic insights. Here, we leverage Bayesian multilevel regression and poststratification, to elucidate inter-individual differences in the relationships between socioeconomic status (SES) and cognitive development. We constructed 14 varying-intercepts and varying-slopes models to investigate 3 cognitive phenotypes and 5 sociodemographic variables (SDV), across 17 US states and 5 race subgroups. SDVs exhibited systemic socio-spatial effects that served as fundamental drivers of variation in cognitive outcomes. Low SES was disproportionately associated with cognitive development among Black and Hispanic children, while high SES was a robust predictor of cognitive development only among White and Asian children, consistent with the minorities' diminished returns (MDRs) theory. Notably, adversity-susceptible subgroups demonstrated an expressive association with fluid cognition compared to crystallized cognition. Poststratification proved effective in correcting group attribution biases, particularly in Pennsylvania, highlighting sampling discrepancies in US states with the highest percentage of marginalized participants in the ABCD Study. Our collective analyses underscore the inextricable link between race and geographic location within the US. We emphasize the importance of diversity-aware population models that consider the intersectional composition of society to derive precise and interpretable insights across applicable domains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11326365 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-4751673/v1 | DOI Listing |
BMC Pharmacol Toxicol
January 2025
Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, PR China.
Background: Alzheimer's disease (AD), a hallmark of age-related cognitive decline, is defined by its unique neuropathology. Metabolic dysregulation, particularly involving glutamine (Gln) metabolism, has emerged as a critical but underexplored aspect of AD pathophysiology, representing a significant gap in our current understanding of the disease.
Methods: To investigate the involvement of GlnMgs in AD, we conducted a comprehensive bioinformatic analysis.
Mol Neurobiol
January 2025
Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India.
Gamma radiation is known to induce several detrimental effects on the nervous system. The hippocampus region, specifically the dentate gyrus (DG) and subventricular zone (SVZ), have been identified as a radiation-sensitive neurogenic niche. Radiation alters the endogenous redox status of neural stem cells (NSCs) and other proliferative cells, especially in the hippocampus region, leading to oxidative stress, neuroinflammation, and cell death.
View Article and Find Full Text PDFNat Hum Behav
January 2025
Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
We conducted a genome-wide association study on income among individuals of European descent (N = 668,288) to investigate the relationship between socio-economic status and health disparities. We identified 162 genomic loci associated with a common genetic factor underlying various income measures, all with small effect sizes (the Income Factor). Our polygenic index captures 1-5% of income variance, with only one fourth due to direct genetic effects.
View Article and Find Full Text PDFNeurosci Biobehav Rev
January 2025
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11, 43125 Parma, Italy.
Perinatal asphyxia (PA) is a leading cause of neonatal morbidity and mortality, often resulting in long-term neurodevelopmental challenges. Despite advancements in perinatal care, predicting long-term outcomes remains difficult. Early diagnosis is essential for timely interventions to reduce brain injury, with tools such as Magnetic Resonance Imaging, brain ultrasound, and emerging biomarkers playing a possible key role.
View Article and Find Full Text PDFAgeing Res Rev
January 2025
Department of Dynamic and Clinical Psychology and Health, University of Rome "Sapienza", 00185 Rome, Italy. Electronic address:
Mild behavioral impairment (MBI) represents a recently introduced diagnostic concept that focuses on behavioral and personality changes occurring in late life and associated with cognitive decline. Nevertheless, the relationship between these dimensions remains unclear. This systematic review and meta-analysis aim to analyze the relationship between MBI and cognitive functioning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!