Next generation sequencing has unlocked a wealth of genotype information for microbial populations, but phenotyping remains a bottleneck for exploiting this information, particularly for pathogens that are difficult to manipulate. Here, we establish a method for high-throughput phenotyping of mixed cultures, in which the pattern of naturally occurring single-nucleotide polymorphisms in each isolate is used as intrinsic barcodes which can be read out by sequencing. We demonstrate that our method can correctly deconvolute strain proportions in simulated mixed-strain pools. As an experimental test of our method, we perform whole genome sequencing of 66 natural isolates of the thermally dimorphic pathogenic fungus and infer the strain compositions for large mixed pools of these strains after competition at 37°C and room temperature. We validate the results of these selection experiments by recapitulating the temperature-specific enrichment results in smaller pools. Additionally, we demonstrate that strain fitness estimated by our method can be used as a quantitative trait for genome-wide association studies. We anticipate that our method will be broadly applicable to natural populations of microbes and allow high-throughput phenotyping to match the rate of genomic data acquisition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11326141 | PMC |
http://dx.doi.org/10.1101/2024.08.05.606565 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!