In recent years, astrocytes have been increasingly implicated in cellular mechanisms of substance use disorders (SUD). Astrocytes are structurally altered following exposure to drugs of abuse; specifically, astrocytes within the nucleus accumbens (NAc) exhibit significantly decreased surface area, volume, and synaptic colocalization after operant self-administration of cocaine and extinction or protracted abstinence (45 days). However, the mechanisms that elicit these morphological modifications are unknown. The current study aims to elucidate the molecular modifications that lead to observed astrocyte structural changes in rats across cocaine abstinence using astrocyte-specific RiboTag and RNA-seq, as an unbiased, comprehensive approach to identify genes whose transcription or translation change within NAc astrocytes following cocaine self-administration and extended abstinence. Using this method, our data reveal cellular processes including cholesterol biosynthesis that are altered specifically by cocaine self-administration and abstinence, suggesting that astrocyte involvement in these processes is changed in cocaine-abstinent rats. Overall, the results of this study provide insight into astrocyte functional adaptations that occur due to cocaine exposure or during cocaine withdrawal, which may pinpoint further mechanisms that contribute to cocaine-seeking behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11326167PMC
http://dx.doi.org/10.1101/2024.08.05.606656DOI Listing

Publication Analysis

Top Keywords

nucleus accumbens
8
cocaine self-administration
8
cocaine
6
investigating cocaine-
4
cocaine- abstinence-induced
4
abstinence-induced effects
4
astrocyte
4
effects astrocyte
4
astrocyte gene
4
gene expression
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, ON, Canada.

Background: The endocannabinoid system has demonstrated roles in Alzheimer's Disease (AD), such as modulation of inflammation. Fatty Acid Amide Hydrolase (FAAH) is the enzyme responsible for the rapid inactivation of the endocannabinoid anandamide into arachidonic acid and ethanolamine. In doing so, FAAH modulates the concentration of anandamide and influences neurobehavioral functions and physiological conditions such as nociception and inflammatory responses.

View Article and Find Full Text PDF

Protein/protein interactions (PPI) play crucial roles in neuronal functions. Yet, their potential as drug targets for brain disorders remains underexplored. The fibroblast growth factor 14 (FGF14)/voltage-gated Na channel 1.

View Article and Find Full Text PDF

The nucleus accumbens (NAc) is a key brain region for motivated behaviors, yet how distinct neuronal populations encode appetitive or aversive stimuli remains undetermined. Using microendoscopic calcium imaging in mice, we tracked NAc shell D1- or D2-medium spiny neurons' (MSNs) activity during exposure to stimuli of opposing valence and associative learning. Despite drift in individual neurons' coding, both D1- and D2-population activity was sufficient to discriminate opposing valence unconditioned stimuli, but not predictive cues.

View Article and Find Full Text PDF

Regulation of food intake and energy balance is critical to survival. Hunger develops as a response to energy deficit and drives food-seeking and consumption. However, motivations to eat are varied in nature, and promoted by factors other than energy deficit.

View Article and Find Full Text PDF

Infradian mood and sleep-wake rhythms with periods of 48 hours and beyond have been observed in patients with bipolar disorder (BD), which even persist in the absence of exogenous timing cues, indicating an endogenous origin. Here, we show that mice exposed to methamphetamine in drinking water develop infradian locomotor rhythms with periods of 48 hours and beyond which extend to sleep length and manic state-associated behaviors in support of a model for cycling in BD. The cycling capacity is abrogated upon genetic disruption of dopamine (DA) production in DA neurons of the ventral tegmental area (VTA) or ablation of nucleus accumbens projecting DA neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!