Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plants respond to biotic stressors by modulating various processes in an attempt to limit the attack by a pathogen or herbivore. Triggering these different defense processes requires orchestration of a network of proteins and RNA molecules that includes microRNAs (miRNAs). These short RNA molecules (20-22 nucleotides) have been shown to be important players in the early responses of plants to stresses because they can rapidly regulate the expression levels of a network of downstream genes. The ascomycete is an important fungal pathogen that causes significant losses in cereal crops worldwide. Using the well-characterized pathosystem, we investigated how plants change expression of their miRNAs globally during the early stages of infection by . In addition to miRNAs that have been previously implicated in stress responses, we have also identified evolutionarily young miRNAs whose levels change significantly in response to fungal infection. Some of these young miRNAs have homologs present in cereals. Thus, manipulating expression of these miRNAs may provide a unique path toward development of plants with increased resistance to fungal pathogens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11326132 | PMC |
http://dx.doi.org/10.1101/2024.05.29.596347 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!