The double layer adsorption of sulfamethoxazole, ketoprofen and carbamazepine on a phosphorus carbon-based adsorbent was analyzed using statistical physics models. The objective of this research was to provide a physicochemical analysis of the adsorption mechanism of these organic compounds via the calculation of both steric and energetic parameters. Results showed that the adsorption mechanism of these pharmaceuticals was multimolecular where the presence of molecular aggregates (mainly dimers) could be expected in the aqueous solution. This adsorbent showed adsorption capacities at saturation from 15 to 36 mg/g for tested pharmaceutical molecules. The ketoprofen adsorption was exothermic, while the adsorption of sulfamethoxazole and carbamazepine was endothermic. The adsorption mechanism of these molecules involved physical interaction forces with interaction energies from 5.95 to 19.66 kJ/mol. These results contribute with insights on the adsorption mechanisms of pharmaceutical pollutants. The identification of molecular aggregates, the calculation of maximum adsorption capacities and the characterization of thermodynamic behavior provide crucial information for the understanding of these adsorption systems and to optimize their removal operating conditions. These findings have direct implications for wastewater treatment and environmental remediation associated with pharmaceutical pollution where advanced adsorption technologies are required.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325378PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e34788DOI Listing

Publication Analysis

Top Keywords

adsorption mechanism
16
adsorption
12
analysis adsorption
8
pharmaceutical pollutants
8
carbon-based adsorbent
8
adsorption sulfamethoxazole
8
molecular aggregates
8
adsorption capacities
8
evaluation analysis
4
mechanism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!