Late blight, caused by the pathogen , is a devastating disease affecting potato production globally, with adverse effects in Africa where limited access to fungicides exacerbates its impact. Outbreaks of late blight lead to reduced yields and substantial economic losses to potato farmers and agricultural systems. The development of resistant potato varieties, tailored to African agroecological conditions, offers a viable solution in mitigating the devastating effects of late blight on potato cultivation. Leading to this study, two consumer-preferred varieties, Victoria and Shangi, with high susceptibility to late blight were targeted for conferring late blight resistance through genetic engineering. This was achieved by inserting genes from wild relatives of potato displaying resistance to the disease. The intended effect of conferring resistance to the late blight disease has been consistently observed over twenty experimental field trials spanning 8 years at three locations in Uganda and Kenya. In this study, we assessed whether the genetic transformation has led to any significant unintended effects on the nutritional and anti-nutritional composition of potato tubers compared to the non-transgenic controls grown under the same agroecological conditions. The compositional assessments were conducted on commercial-size potato tubers harvested from regulatory trials at three locations in Uganda and Kenya. Statistical analysis was conducted using two-way analysis of variance comparing transgenic and non-transgenic samples. Overall, the results showed that the transgenic and non-transgenic samples exhibited similar levels of nutritional and antinutritional components. Variations detected in the levels of the analysed components fell within the expected ranges as documented in existing literature and potato composition databases. Thus, we conclude that there are no biologically significant differences in the nutritional and anti-nutritional composition of transgenic and non-transgenic potato tubers engineered for resistance to late blight.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324452 | PMC |
http://dx.doi.org/10.3389/fbioe.2024.1432079 | DOI Listing |
Sci Rep
December 2024
Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650504, China.
Potato late blight is a common disease affecting crops worldwide. To help detect this disease in complex environments, an improved YOLOv5 algorithm is proposed. First, ShuffleNetV2 is used as the backbone network to reduce the number of parameters and computational load, making the model more lightweight.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Division of Plant Sciences, School of Life Sciences, James Hutton Institute, University of Dundee, Dundee, UK.
Endocytosis is an essential cellular process that uptakes substances into cells at the plasma membrane from the extracellular space and plays a major role in plant development and responses to environmental stimuli. Research has shown that plant membrane-resident proteins are endocytosed and transported into plant endosomes in response to pathogen-secreted elicitors. However, there is no conclusive experimental evidence demonstrating how secreted cytoplasmic effectors from oomycetes and fungi enter host cells during infection.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China. Electronic address:
Dimethomorph (DMT) is a widely-used selective active fungicide that effectively controls downy mildew, crown rot, and late blight in crops. The extensive application of DMT raises concerns about its ecological impact on non-target organisms in the environment. However, there is limited understanding of the toxicological properties of DMT on these organisms.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of CSE, Jadavpur University, Kolkata 700032, India.
While past research has emphasized the importance of late blight infection detection and classification, anticipating the potato late blight infection is crucial from the economic point of view as it helps to significantly reduce the production cost. Furthermore, it is necessary to minimize the exposure of potatoes to harmful chemicals and pesticides due to their potential adverse effects on the human immune system. Our work is based on the precise classification of late blight infections in potatoes in European countries using real-time data from 1980 to 2000.
View Article and Find Full Text PDFJ Hist Med Allied Sci
December 2024
University of Western Ontario, Canada.
Kudzu, a perennial climbing vine and invasive species to the American South, occupied a unique space in the city of Atlanta, Georgia as a danger to public health from the late 1970s to the early 1990s. This article examines why municipal authorities understood the vine as a threat to public health. Kudzu's ability to smother surfaces allowed it to conceal murdered people and serve as a habitat for rats, snakes, and mosquitos, making it a direct threat to public safety in the eyes of public health authorities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!