Download full-text PDF |
Source |
---|
Biomimetics (Basel)
December 2024
Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil.
Background: The use of ex vivo assays associated with biomaterials may allow the short-term visualization of a specific cell type response inserted in a local microenvironment. Blood is the first component to come into contact with biomaterials, providing blood clot formation, being substantial in new tissue formation. Thus, this research investigated the physiological blood clot (PhC) patterns formed in 3D scaffolds (SCAs), based on chitosan and 20% beta-tricalcium phosphate and its effect on osteogenesis.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM-Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy. Electronic address:
Polyhydroxyalkanoates (PHAs) are microbially produced aliphatic polyesters investigated for tissue engineering thanks to their biocompatibility, processability, and suitable mechanical properties. Taking advantage of these properties, the present study investigates the development by 3D printing of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffolds loaded with β-tricalcium phosphate (β-TCP) for bone tissue regeneration. PHBV blending with poly(lactide-co-glycolide) (PLGA) (30 wt%) was exploited to enhance material processability via an optimized computer-aided wet-spinning approach.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil. Electronic address:
Natural rubber latex membrane (NRL) is a biocompatible macromolecule that stimulates angiogenesis and promotes bone repair. Similarly, β-tricalcium phosphate (β-TCP) is an osteoconductive and osteoinductive bioceramic widely used as a bone substitute. Here, we investigated the combined use of these biomaterials in the guided bone regeneration process for calvarial defects in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!