Bacteria of the species belong to the family , are Gram-negative bacilli, are moderately thermophilic and are included in the group of thiosulfate-reducing bacteria, being capable of significantly accelerating corrosion in metallic structures. However, no in-depth study on the genome, antibiotic resistance and mobile elements has been carried out so far. In this work, the isolation, phenotypic and genotypic characterization of the multi-resistant UFV_LIMV02 strain was carried out, from water samples from an offshore oil extraction platform in Rio de Janeiro (Brazil). We determined that the isolate has a genome of 2 812 778 bp in size, with 26 % GC content, organized into 34 contigs. Genomic annotation using Rapid Annotation using Subsystem Technology revealed the presence of genes related to resistance to antibiotics and heavy metals. By evaluating the antimicrobial resistance of the isolate using the disc diffusion technique, resistance was verified for the classes of antibiotics, beta-lactams, fluoroquinolones, aminoglycosides, sulfonamides, lincosamides and rifamycins, a total of 14 antibiotics. The search for genomic islands, prophages and defence systems against phage infection revealed the presence of five genomic islands in its genome, containing genes related to resistance to heavy metals and antibiotics, most of which are efflux pumps and several transposases. No prophage was found in its genome; however, nine different defence systems against phage infection were detected. When analysing the clustered regularly interspaced short palindromic repeat (CRISPR) systems, four CRISPR arrays, classified as types I-B and III-B, with 272 spacers, can provide the strain with immunity to different mobile genetic elements and bacteriophage infection. The results found in this study show that the isolate UFV_LIVM02 is an environmental bacterium, resistant to different classes of antibiotics, and that the proteins encoded by the predicted genomic islands may be associated with the development of greater resistance to antibiotics and heavy metals. They provide evidence that environmental bacteria found in offshore oil exploration residues may pose a risk for the spread of antibiotic resistance genes. More comprehensive studies on the microbial community present in oil waste are needed to assess the risks of horizontal gene transfer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11326445PMC
http://dx.doi.org/10.1099/acmi.0.000801.v3DOI Listing

Publication Analysis

Top Keywords

offshore oil
12
heavy metals
12
genomic islands
12
antibiotic resistance
8
revealed presence
8
genes resistance
8
resistance antibiotics
8
antibiotics heavy
8
classes antibiotics
8
defence systems
8

Similar Publications

High-Efficiency Fluorescent-Coupled Optical Fiber Passive Tactile Sensor with Integrated Microlens for Surface Texture and Roughness Detection.

ACS Appl Mater Interfaces

December 2024

College of Electrical and Information Engineering, SANYA Offshore Oil and Gas Research Institute, Northeast Petroleum University, Daqing 163318, China.

Integrating ZnS:Cu@AlO/polydimethylsiloxane (PDMS) flexible matrices with optical fibers is crucial for the development of practical passive sensors. However, the fluorescence coupling efficiency is constrained by the small numerical aperture of the fiber, leading to a reduction in sensor sensitivity. To mitigate this limitation, a microsphere lens was fabricated at the end of the multimode fiber, which resulted in a 21.

View Article and Find Full Text PDF

The application of flexible risers has led to increased production of fluid contents in the marine industry. This paper presents the design challenges of a flexible riser subjected to internal pressure under deep-water conditions, at a water depth of 2000 m. Parametric variations with extensive dynamic analysis were carried out.

View Article and Find Full Text PDF

Understanding the dynamic characterization of the CO miscible flooding process in low permeability reservoirs and its mechanism for oil recovery enhancement is crucial for controlling CO miscible flooding sweep efficiency and further enhancing oil recovery. This study was conducted in a low permeability reservoir in Jilin, China, using both online nuclear magnetic resonance CO miscible flooding and long-core CO miscible flooding experiments. A refined dynamic characterization of the CO miscible flooding process from the macroscopic core scale to the microscopic pore scale was achieved through multiple spatial online nuclear magnetic resonance testing methods.

View Article and Find Full Text PDF

The offshore oilfields in the North Sea area are increasingly employed for projects beyond oil production, like carbon capture and storage (CCS). Still, the fossil fuel production from mature fields is significant. It has raised environmental concerns associated with discharging produced waters (PW) and drilling mud into the sea.

View Article and Find Full Text PDF

Visualization study of the effects of polycarboxylates on CO hydrate generation and interfacial property.

Sci Total Environ

December 2024

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China. Electronic address:

Marine carbon sequestration, with its high potential and low risk of leakage, is an attractive technology for effectively addressing global climate change and reducing greenhouse gas emissions. A current concern about marine sequestration lies in the potential negative effects of the carbon sequestration process on the marine environment. CO hydrate sequestration is considered to be one of the most stable method of sequestration, and researchers are actively searching for promoters that facilitate hydrate sequestration and are friendly to the marine environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!