Nonisocyanate polyurethanes (NIPUs) show promise as more sustainable alternatives to conventional isocyanate-based polyurethanes (PUs). In this study, polyhydroxyurethane (PHU) and nonisocyanate polythiourethane (NIPTU) production and reprocessing models inform the results of a techno-economic analysis and a life cycle assessment. The profitability of selling PHU and NIPTU is rationalized by identifying significant production costs, indicating that raw materials drive the costs of PHU and NIPTU production and reprocessing. After stepping along a path of process improvements, PHU and NIPTU can achieve minimum selling prices (MSPs) of 3.15 and 4.39 USD kg, respectively. Depolymerization yields need to be optimized, and polycondensation reactions need to be investigated for the reprocessing of NIPUs into secondary (2°) NIPUs. Of the NIPUs examined here, PHU has a low depolymerization yield and NIPTU has a high depolymerization yield. Fossil energy use, greenhouse gas (GHG) emissions, and water consumption are reported for the biobased production of PHU, NIPTU, 2° PHU, and 2° NIPTU and compared with baseline values for fossil-based PU production. There are options for reducing environmental impacts, which could make these pathways more sustainable. If barriers to implementation are overcome, 2° NIPUs can be manufactured at lower cost and environmental impacts than those of virgin NIPUs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323267PMC
http://dx.doi.org/10.1021/acssuschemeng.4c04046DOI Listing

Publication Analysis

Top Keywords

phu niptu
16
production reprocessing
12
techno-economic analysis
8
analysis life
8
life cycle
8
cycle assessment
8
nonisocyanate polythiourethane
8
niptu production
8
2° nipus
8
depolymerization yield
8

Similar Publications

Nonisocyanate polyurethanes (NIPUs) show promise as more sustainable alternatives to conventional isocyanate-based polyurethanes (PUs). In this study, polyhydroxyurethane (PHU) and nonisocyanate polythiourethane (NIPTU) production and reprocessing models inform the results of a techno-economic analysis and a life cycle assessment. The profitability of selling PHU and NIPTU is rationalized by identifying significant production costs, indicating that raw materials drive the costs of PHU and NIPTU production and reprocessing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!