As an alternative to thermionic X-ray generators, cold-cathode X-ray tubes are being developed for portable and multichannel tomography. Field emission propagating from needle structures such as carbon nanotubes or Si tips currently dominates related research and development, but various obstacles prevent the widespread of this technology. An old but simple electron emission design is the planar tunnelling cathode using a metal-oxide-semiconductor (MOS) structure, which achieves narrow beam dispersion and low supplying voltage. Directly grown vertical graphene (VG) is employed as the gate electrode of MOS and tests its potential as a new emission source. The emission efficiency of the device is initially ≈1% because of unavoidable fabrication damage during the patterning processes; it drastically improves to >40% after ozone treatment. The resulting emission current obeys the Fowler-Nordheim tunnelling model, and the enhanced emission is attributed to the effective gate thickness reduction by ozone treatment. As a proof-of-concept experiment, a clustered array of 2140 cells is integrated into a system that provides mA-class emission current for X-ray generation. With pulsed digital excitations, X-ray imaging of a chest phantom, demonstrating the feasibility of using a VG MOS electron emission source as a new and innovative X-ray generator is realized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497061PMC
http://dx.doi.org/10.1002/advs.202403721DOI Listing

Publication Analysis

Top Keywords

vertical graphene
8
tunnelling cathode
8
x-ray imaging
8
emission
8
electron emission
8
emission source
8
ozone treatment
8
emission current
8
x-ray
6
integration vertical
4

Similar Publications

The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.

View Article and Find Full Text PDF

VG@nAu-based fluorescent biosensor for grading Alzheimer's disease by detecting P-tau181 protein in clinical samples.

Anal Chim Acta

February 2025

Institute for Advanced Study (IAS), College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China. Electronic address:

Background: Alzheimer's disease (AD) is a neurodegenerative disorder with a very long duration, posing a serious threat to people's life and health. To date, no medicine that can cure or reverse the disease has been developed or reported, so early diagnosis and timely intervention are essential. The concentration of Phosphorylated tau181 (P-tau181) in blood has been approved by FDA as a standard for assisting clinical diagnosis of AD.

View Article and Find Full Text PDF

Lithium-sulfur batteries have been recognized as one of the excellent candidates for next-generation energy storage batteries because of their high energy density and low cost and low pollution. However, lithium-sulfur batteries have been challenged by low conductivity, low sulfur utilization, poor cycle life, and the shuttle effect of polysulfides. To address these problems, we report here an independent mixed sulfur host.

View Article and Find Full Text PDF

Lotus-inspired cellulose-based aerogel with Janus wettability and vertically aligned vessels for salt-rejecting solar seawater purification.

Carbohydr Polym

March 2025

Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China. Electronic address:

High-performance solar interface evaporators provide a promising, sustainable, and cost-effective solution to the global freshwater crisis through seawater purification. However, achieving a delicate balance between maximizing the evaporation rate and ensuring continuous, stable, and durable operation presents a critical challenge. Herein, we present a biomimetic cellulose/polypyrrole-coated silica/graphene evaporator with self-assembled nanofiber networks and vertically aligned vessels for enhanced salt resistance.

View Article and Find Full Text PDF

Portable paper-based microfluidic devices based on CuS@AgS nanocomposites for colorimetric/electrochemical dual-mode detection of dopamine.

Biosens Bioelectron

January 2025

Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China. Electronic address:

The development of integrated multiple signal outputs within a single platform is highly significant for efficient and accurate on-site biomarker detection. Herein, colorimetric/electrochemical dual-mode microfluidic paper-based analytical devices (μPADs) were designed for portable, visual and accurate dopamine (DA) detection. The dual-mode μPADs, featuring folded structure, integrate a colorimetric layer and an electrochemical layer using wax printing and laser-induced graphene (LIG) pyrolysis techniques, allowing the vertical flow of analyte solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!