In the field of tissue engineering, the extracellular matrix (ECM) is considered an important element for promoting neural regeneration after spinal cord injury (SCI). Dental pulp stem cells (DPSCs), mesenchymal stem cells that originate from the neural crest, are easy to harvest and culture in vitro, express a variety of neurotrophic factors (NTFs) and deposit a large amount of ECM, making them a good choice for stem cell- or ECM-based treatment of SCI. In the present study, decellularized extracellular matrix (dECM) derived from DPSC sheets is used for the treatment of SCI. Optimization experiments reveal that incubating DPSC sheets with 1% Triton X-100 for 5 min is the best procedure for preparing DPSC dECM. It is found that DPSC dECM promotes nerve repair and regeneration after SCI and restores hindlimb motor function in rats. Mechanistically, DPSC dECM facilitates the migration and neural differentiation of neural stem cells, as well as M2 polarization of microglia, and inhibits the formation of glial scars. This study suggests that the use of DPSC dECM is a potential strategy for the treatment of SCI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202402312 | DOI Listing |
Adv Healthc Mater
August 2024
Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.
In the field of tissue engineering, the extracellular matrix (ECM) is considered an important element for promoting neural regeneration after spinal cord injury (SCI). Dental pulp stem cells (DPSCs), mesenchymal stem cells that originate from the neural crest, are easy to harvest and culture in vitro, express a variety of neurotrophic factors (NTFs) and deposit a large amount of ECM, making them a good choice for stem cell- or ECM-based treatment of SCI. In the present study, decellularized extracellular matrix (dECM) derived from DPSC sheets is used for the treatment of SCI.
View Article and Find Full Text PDFMater Today Bio
February 2023
Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
Extracellular vesicles (EVs) are a collective term for nanoscale or microscale vesicles secreted by cells that play important biological roles. Mesenchymal stem cells are a class of cells with the potential for self-healing and multidirectional differentiation. In recent years, numerous studies have shown that EVs, especially those secreted by mesenchymal stem cells, can promote the repair and regeneration of various tissues and, thus, have significant potential in regenerative medicine.
View Article and Find Full Text PDFOdontology
October 2021
Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People's Republic of China.
Pulp regeneration with stem cells is a promising alternative for treating periapical and pulp diseases of young permanent teeth. The aim of this study was to characterize decellularized dental pulp extracellular matrix (dECM) and investigate whether bone morphogenetic protein 4 (BMP4) regulates dental pulp stromal cells (DPSC)-mediated pulp regeneration combined with dECM. Dental pulp isolated from healthy third molars was decellularized with 10% sodium dodecyl sulfate (SDS) and Triton X-100.
View Article and Find Full Text PDFTissue Cell
April 2016
Comprehensive Dental Care, Endodontics, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong. Electronic address:
A major bottleneck to the therapeutic applications of dental pulp stem cells (DPSC) are their limited proliferative capacity ex vivo and tendency to undergo senescence. This may be partly due to the sub-optimal in vitro culture milieu, which could be improved by an appropriate extracellular matrix substratum. This study therefore examined decellularized matrix (DECM) from stem cells derived from human exfoliated deciduous teeth (SHED) and periodontal ligament stem cells (PDLSC), as potential substrata for DPSC culture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!