At least two global "Snowball Earth" glaciations occurred during the Neoproterozoic Era (1000-538.8 million years ago). Post-glacial surface environments during this time are recorded in cap carbonates: layers of limestone or dolostone that directly overlie glacial deposits. Postulated environmental conditions that created the cap carbonates lack consensus largely because single hypotheses fail to explain the cap carbonates' global mass, depositional timescales, and geochemistry of parent waters. Here, we present a global geologic carbon cycle model before, during, and after the second glaciation (i.e. the Marinoan) that explains cap carbonate characteristics. We find a three-stage process for cap carbonate formation: (1) low-temperature seafloor weathering during glaciation generates deep-sea alkalinity; (2) vigorous post-glacial continental weathering supplies alkalinity to a carbonate-saturated freshwater layer, rapidly precipitating cap carbonates; (3) mixing of post-glacial meltwater with deep-sea alkalinity prolongs cap carbonate deposition. We suggest how future geochemical data and modeling refinements could further assess our hypothesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327254PMC
http://dx.doi.org/10.1038/s41467-024-51412-8DOI Listing

Publication Analysis

Top Keywords

cap carbonates
16
cap carbonate
12
cap
8
depositional timescales
8
timescales geochemistry
8
deep-sea alkalinity
8
three-stage formation
4
formation cap
4
carbonates
4
carbonates marinoan
4

Similar Publications

The construction industry is generally characterized by high emissions, making its transition to low-carbon practices essential for achieving a low-carbon economy. However, due to information asymmetry, there remains a gap in research regarding the strategic interactions and reward/punishment mechanisms between governments and firms throughout this transition. This paper addresses this gap by investigating probabilistic and static reward and punishment evolutionary games.

View Article and Find Full Text PDF

The key structural components of a wind turbine blade, such as the skin, spar cap, and shear web, are fabricated from fiber-reinforced composite materials. The spar, predominantly manufactured via resin infusion-a process of resin injection and curing in carbon fibers-is prone to initial defects, such as pores, wrinkles, and delamination. This study suggests employing the pultrusion technique for spar production to consistently obtain a uniform cross-section and augment the reliability of both the manufacturing process and the design.

View Article and Find Full Text PDF

Opportunities and Challenges of a Cap-and-Trade System for Plastics.

Environ Sci Technol

January 2025

Wageningen University and Research, Hydrology and Environmental Hydraulics Group, 6700 AA Wageningen, The Netherlands.

Recently, the rapid increase in global plastics production has caused various ecological and economic issues, worsened by poor material and waste management. Among the market-based instruments that could help mitigate the environmental impacts of plastics throughout their life-cycle, we evaluate the advantages and limitations of incorporating a cap-and-trade (CAT) system into future policy mixes. Our aim is to inspire further investigation of CAT's feasibility rather than presenting it as the ultimate solution.

View Article and Find Full Text PDF

Bimetallic metal-organic frameworks as electrode modifiers for enhanced electrochemical sensing of chloramphenicol.

Mikrochim Acta

January 2025

Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.

An electrochemical sensor is presented for the detection of the chloramphenicol (CAP) based on a bimetallic MIL-101(Fe/Co) MOF electrocatalyst. The MIL-101(Fe/Co) was prepared by utilizing mixed-valence Fe (III) and Co (II) as metal nodes and terephthalic acid as ligands with a simple hydrothermal method and characterized by SEM, TEM, XRD, FTIR, and XPS. Electrochemical measurements such as electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) showed that bimetallic MIL-101(Fe/Co) had the faster electron transfer, larger electroactive area, and higher electrocatalytic activity compared with  their monometallic counterparts due to the strong synergistic effect between bimetals.

View Article and Find Full Text PDF

Injecting CO into deep geological formations can be an effective carbon removal and storage technology to mitigate global climate change. Interaction of injected CO with rock formations changes pH and hydrochemistry within the deep injection zone (> 800 m depth). However, cap rocks and multiple tight aquitards typically act as barriers to protect the shallow aquifer from changes in the injection zone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!