To achieve high power conversion efficiency in perovskite/silicon tandem solar cells, it is necessary to develop a promising wide-bandgap perovskite absorber and processing techniques in relevance. To date, the performance of devices based on wide-bandgap perovskite is still limited mainly by carrier recombination at their electron extraction interface. Here, we demonstrate assembling a binary two-dimensional perovskite by both alternating-cation-interlayer phase and Ruddlesden-Popper phase to passivate perovskite/C interface. The binary two-dimensional strategy takes effects not only at the interface but also in the bulk, which enables efficient charge transport in a wide-bandgap perovskite solar cell with a stabilized efficiency of 20.79% (1 cm). Based on this absorber, a monolithic perovskite/silicon tandem solar cell is fabricated with a steady-state efficiency of 30.65% assessed by a third party. Moreover, the tandem devices retain 96% of their initial efficiency after 527 h of operation under full spectral continuous illumination, and 98% after 1000 h of damp-heat testing (85 °C with 85% relative humidity).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327242PMC
http://dx.doi.org/10.1038/s41467-024-51345-2DOI Listing

Publication Analysis

Top Keywords

perovskite/silicon tandem
12
tandem solar
12
wide-bandgap perovskite
12
solar cells
8
binary two-dimensional
8
solar cell
8
binary perovskite
4
perovskite passivation
4
passivation efficient
4
efficient stable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!