Plants possess cell surface-localized immune receptors that detect microbe-associated molecular patterns (MAMPs) and initiate defenses that provide effective resistance against microbial pathogens. Many MAMP-induced signaling pathways and cellular responses are known, yet how pattern-triggered immunity (PTI) limits pathogen growth in plants is poorly understood. Through a combined metabolomics and genetics approach, we discovered that plant-exuded proline is a virulence-inducing signal and nutrient for the bacterial pathogen Pseudomonas syringae, and that MAMP-induced depletion of proline from the extracellular spaces of Arabidopsis leaves directly contributes to PTI against P. syringae. We further show that MAMP-induced depletion of extracellular proline requires the amino acid transporter Lysine Histidine Transporter 1 (LHT1). This study demonstrates that depletion of a single extracellular metabolite is an effective component of plant induced immunity. Given the important role for amino acids as nutrients for microbial growth, their depletion at sites of infection may be a broadly effective means for defense against many pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327374PMC
http://dx.doi.org/10.1038/s41467-024-51244-6DOI Listing

Publication Analysis

Top Keywords

depletion extracellular
8
extracellular proline
8
directly contributes
8
pattern-triggered immunity
8
bacterial pathogen
8
syringae mamp-induced
8
mamp-induced depletion
8
transporter-mediated depletion
4
extracellular
4
proline
4

Similar Publications

The vacuolar-type H-ATPase (V-ATPase) is a proton pump responsible for controlling the intracellular and extracellular pH of cells. Its activity and assembly are tightly controlled by multiple pathways, of which phosphorylation-mediated regulation is poorly understood. In this report, we show that in response to starvation stimuli, the nonreceptor tyrosine kinase ABL1 directly interacts with ATP6V1B2, a subunit of the V domain of the V-ATPase, and phosphorylates ATP6V1B2 at Y68.

View Article and Find Full Text PDF

Metabolites in Serum Small Extracellular Vesicles Instead of Small Extracellular Vesicles-depleted Serum Have Better Diagnostic Value for Cancers at Early Stage.

Small

January 2025

Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China.

Serum is one of the most commonly used biofluids for biomarker exploration. Some studies examine serum directly, while others focus on specific components like small extracellular vesicles (sEVs), which are lipid-bilayer encapsulated particles carrying a variety of molecular cargos. However, the diagnostic value of serum sEVs versus sEVs-depleted fractions (EV-free serum) for early cancer detection are unclear.

View Article and Find Full Text PDF

Loss-of-function mutations in PARK7, encoding for DJ-1, can lead to early onset Parkinson's disease (PD). In mice, Park7 deletion leads to dopaminergic deficits during aging, and increased sensitivity to oxidative stress. However, the severity of the reported phenotypes varies.

View Article and Find Full Text PDF

Mitochondria-Targeting Virus-Like Gold Nanoparticles Enhance Chemophototherapeutic Efficacy Against Pancreatic Cancer in a Xenograft Mouse Model.

Int J Nanomedicine

January 2025

Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People's Republic of China.

Background: The dense and fibrotic nature of the pancreatic tumor microenvironment significantly contributes to tumor invasion and metastasis. This challenging environment acts as a formidable barrier, hindering effective drug penetration and delivery, which ultimately limits the efficacy of conventional cancer treatments. Gold nanoparticles (AuNPs) have emerged as promising nanocarriers to overcome the extracellular matrix barrier; however, their limited targeting precision, poor delivery efficiency, and insufficient photothermal conversion present challenges.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) emerged as critical contributors to the pathogenesis of vascular endothelial barrier dysfunction during the inflammatory response to infection. However, the contribution of circulating EVs to modifying endothelial function during dengue virus infection remains unclear. In this study, we showed that severe dengue patients' plasma-derived EV (SD-EV) were found to carry elevated levels of different protein cargos, e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!