Mechanized production of Jiangxiangxing Baijiu (JB) stands as a pivotal trend in today's Baijiu industry. This study, employing high-throughput sequencing and headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) technology, comprehensively analyzed the micro ecology, physicochemical factors, and volatile components during pit fermentation, comparing traditional fermentation Zaopei (TZP) and mechanized fermentation Zaopei (MZP). According to the research findings, the dominant microorganisms in the fermentation process of ZP comprise Lactobacillus, Monascus, Issatchenkia, and Zygosaccharomyces. In addition, functional microorganisms like Zygosaccharomyces, Monascus, Issatchenkia, Leiothecium, Candida, Pichia, and others exhibited differences on day 0 and throughout the fermentation process. These differences are attributed to the effects of distinct fermentation environment and physicochemical factors. Furthermore, comprehensive analysis detected 87 volatile compounds in TZP and MZP, with 56 showing significant differences, primarily including alcohols, aldehydes, ketones, acids, esters, and aromatics. Additionally, fermentation can be classified into two phases based on ethanol and volatile compounds production: the initial phase (0-12 days, P1) primarily focuses on alcohols production, while the subsequent phase (12-30 days, P2) concentrates on volatile compounds generation. The subsequent correlation analysis indicates that variations in volatile compounds primarily arise from shifts in microbial composition, with notable differences observed in fungi, specifically Monascus, Zygosaccharomyces, and Issatchenkia, which drive the disparities in volatile compounds. This study provides an important theoretical basis and practical guidance for the realization of mechanized high-quality production of JB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2024.114748DOI Listing

Publication Analysis

Top Keywords

volatile compounds
20
physicochemical factors
12
mechanized production
8
jiangxiangxing baijiu
8
micro ecology
8
factors volatile
8
fermentation zaopei
8
fermentation process
8
monascus issatchenkia
8
volatile
7

Similar Publications

With the rising demand of saffron, it is essential to standardize the confirmation of its origin and identify any adulteration to maintain a good quality led market product. However, a rapid and reliable strategy for identifying the adulteration saffron is still lacks. Herein, a combination of headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and convolutional neural network (CNN) was developed.

View Article and Find Full Text PDF

The Chinese proverb "One mountain, one flavor" reflects that raw pu-erh tea (RPT) from different tea-producing mountains (TPMs) possesses distinct flavor profiles. However, limited research has been conducted on the chemical composition underlying distinct flavor profiles. In this study, sensory evaluation and main phytochemical compositions revealed diverse aromas of RPTs from 26 TPMs.

View Article and Find Full Text PDF

Epidemiological evidence from the past 20 years indicates that environmental chemicals brought into the air by the vaporization of volatile organic compounds and other anthropogenic pollutants might be involved, at least in part, in the development or progression of psychiatric disorders. This evidence comes primarily from occupational work studies in humans, with indoor occupations being the most important sources of airborne pollutants affecting neural circuits implicated in mood disorders (e.g.

View Article and Find Full Text PDF

Sequential bioaugmentation of the dominant microorganisms to improve the fermentation and flavor of cereal vinegar.

Food Chem X

January 2025

Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.

Traditional cereal vinegars are fermented by microorganisms that are spontaneously enriched, leading to uncertainty in regulating the fermentation process and flavor. The objective of this study was to elucidate the impact of the predominant microorganisms, provenly and , on the solid-state fermentation (SSF) and flavor profile of cereal vinegar by several bioaugmentation strategies. The results indicated that the sequential bioaugmentation of predominant microorganisms improved the utilization of raw material and most key flavor compounds.

View Article and Find Full Text PDF

To investigate the impact of genetic factors on wine aroma, wines made from 22 clones of five grape varieties ( L.) were used to analyze the volatile compounds by headspace solid phase microextraction gas chromatography mass spectrometer (HS-SPME-GC-MS) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). Results showed that 52 and 49 aroma compounds were identified from 22 clones of wines by two technologies, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!