In recent years, flexible sensors constructed mainly from hydrogels have played an indispensable role in several fields. However, the traditional hydrogel preparation process involves complex and time-consuming steps and the freezing or volatilization of water in the water gel in extreme environments greatly limits the further use of the sensor. Therefore, an ionic conductive hydrogel (SnHTD) was designed, which was composed of tannic acid (TA), metal ions Sn, hydroxyethyl cellulose (HEC), and acrylamide (AM) in a deep eutectic solvent (DES) and water binary solvent. It is worth noting that the gel time is shortened to less than 3 min by introducing the Sn-TA redox system. The addition of DES makes the hydrogel have a wide temperature tolerance range (-20 to 60 °C) and the ability to store for a long time (30 days). The introduction of HEC increased the tensile stress of hydrogel from 140.17 kPa to 219.89 kPa. Additionally, the hydrogel also has high conductivity, repeatable adhesion and UV shielding properties. In general, this research opens up a new way for room temperature polymerization of environmentally resistant hydrogel materials and effectively meets the growing demand for wireless wearable sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.134696 | DOI Listing |
Int J Biol Macromol
January 2025
The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China. Electronic address:
Cellulose is a renewable biodegradable polymer derived from abundant natural resources. Substituting petroleum-based polymers with cellulose-based bioplastics is an effective way to alleviate environmental issues like resource depletion and white pollution. However, challenges such as poor thermostability, hard to thermoform and water sensitivity seriously hinder the fabrication and use of cellulose-based bioplastics.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
Background/objectives: In this study, HECP2k polymer, polyethylenimine2k (PEI2k)-modified hydroxyethyl cellulose (HEC) was utilized to form the nanocomplexes with receptor activator of nuclear factor k-B (RANK) siRNA and zoledronate (Zol) for osteoclast inhibition. HECP2k/(RANK siRNA + Zol) nanocomplexes prepared by simple mixing were anticipated to overcome the low transfection efficiency of siRNA and the low bioavailability of Zol.
Methods: The characterization of both HECP2k/(pDNA + Zol) nanocomplexes and HECP2k/(RANK siRNA + Zol) nanocomplexes was performed.
Pharmaceuticals (Basel)
November 2024
Department of Chemical and Pharmaceutical Sciences, Faculty of HSSCE, Kingston University, Kingston-upon-Thames KT1 2EE, UK.
A range of NMR techniques, including diffusion ordered spectroscopy (DOSY) were used to characterise complex micelles formed by the anti-microbial cationic surfactant cetylpyridium chloride and to quantify the degree of interaction between cetylpyridium chloride and hydroxyethyl cellulose in a variety of commercially relevant formulations as a model for the disk retention assay. This NMR-derived binding information was then compared with the results of formulation analysis by traditional disk retention assay (DRA) and anti-microbial activity assays to assess the suitability of these NMR techniques for the rapid identification of formulation components that could augment or retard antimicrobial activity DRA. NMR showed a strong ability to predict anti-microbial activity for a diverse range of formulations containing cetylpyridinium chloride (CPC).
View Article and Find Full Text PDFGels
December 2024
Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research "Dr. Josif Pančić", Tadeuša Koscuška 1, 11000 Belgrade, Serbia.
Natural deep eutectic solvents (NaDES) were employed for the extraction of bilberry and green tea leaves. This study explored the incorporation of these NaDES extracts into various carrier systems: hydrogels, emulsions, and emulgels stabilized with hydroxyethyl cellulose or xanthan gum. The results demonstrated that, when combined with synthetic UV filters, the NaDES extracts significantly enhanced the SPF and improved the antioxidant properties of the formulation.
View Article and Find Full Text PDFGels
December 2024
Department of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary.
Genitourinary syndrome of menopause (GSM) affects a significant percentage of postmenopausal women and manifests as vaginal dryness, irritation, and urinary discomfort, typically treated with vaginal estrogens. Hydrogels are preferred over creams due to their superior comfort and mucoadhesive properties. This study introduces a novel vaginal gel formulation containing hydroxyethyl cellulose (HEC) and estriol-hydroxypropyl-β-cyclodextrin complex (E3-HPBCD) for the treatment of GSM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!