Ischemia-reperfusion injury (IRI) is a cumulation of pathophysiological processes that involves cell and organelle damage upon blood flow constraint and subsequent restoration. However, studies on overall immune infiltration and ferroptosis in liver ischemia-reperfusion injury (LIRI) are limited. This study explored immune cell infiltration and ferroptosis in LIRI using bioinformatics and experimental validation. The GSE151648 dataset, including 40 matched pairs of pre- and post- transplant liver samples was downloaded for bioinformatic analysis. Eleven hub genes were identified by overlapping differentially expressed genes (DEGs), iron genes, and genes identified through weighted gene co-expression network analysis (WGCNA). Subsequently, the pathway enrichment, transcription factor-target, microRNA-mRNA and protein-protein interaction networks were investigated. The diagnostic model was established by logistic regression, which was validated in the GSE23649 and GSE100155 datasets and verified using cytological experiments. Moreover, several drugs targeting these genes were found in DrugBank, providing a more effective treatment for LIRI. In addition, the expression of 11 hub genes was validated using quantitative real-time polymerase chain reaction (qRT-PCR) in liver transplantation samples and animal models. The expression of the 11 hub genes increased in LIRI compared with the control. Five genes were significantly enriched in six biological process terms, six genes showed high enrichment for LIRI-related signaling pathways. There were 56 relevant transcriptional factors and two central modules in the protein-protein interaction network. Further immune infiltration analysis indicated that immune cells including neutrophils and natural killer cells were differentially accumulated in the pre- and post-transplant groups, and this was accompanied by changes in immune-related factors. Finally, 10 targeted drugs were screened. Through bioinformatics and further experimental verification, we identified hub genes related to ferroptosis that could be used as potential targets to alleviate LIRI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygeno.2024.110918 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!