Chronic Kidney Disease (CKD) has emerged as a global public health concern, with its primary pathological basis being Renal Fibrosis (RF), crucial to halt its progression to End-Stage Renal Disease (ESRD). However, effective treatment options are currently lacking. Therefore, exploring the mechanisms of RF, identifying drug targets and diagnostic biomarkers are important. In this study, we identified ADAMTS16 as a newly expressed regulatory factor highly expressed in renal fibrosis tissue. ADAMTS16 interacts with latency-associated peptide (LAP)-transforming growth factor (TGF)-β, leading to the activation of TGF-β. Loss of ADAMTS16 expression effectively reduces TGF-β-dependent transcription activity. Furthermore, the use of RRFR tetrapeptide derived from ADAMTS16 can activate the TGF-β/Smad signaling axis, promoting RF. In summary, ADAMTS16 is induced in the progression of CKD, interacting with LAP-TGF-β and potentially activating SMAD2/3. Therefore, targeting ADAMTS16 may serve as a crucial new strategy to alleviate RF and treat CKD patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2024.111347 | DOI Listing |
Int Immunopharmacol
December 2024
Department of Nephrology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China. Electronic address:
Background: Adipose mesenchymal stem cells (ADSCs) exert beneficial effects on kidney disease through a paracrine mechanism. However, the specific molecular mechanisms by which ADSCs treat renal fibrosis are not yet fully understood. Therefore, it is crucial to clarify the therapeutic effects of ADSC-derived extracellular vesicles (ADSC-EVs) on the progression of renal fibrosis and their underlying mechanisms.
View Article and Find Full Text PDFPhytomedicine
December 2024
Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China; Institute of Bioactive Substance and Function of Chinese Materia Medica and Mongolian Medicine, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China. Electronic address:
Background: Renal fibrosis (RF) is an inevitable consequence of multiple manifestations of progressive chronic kidney diseases (CKDs). Mechanism of Amygdalus mongolica (Maxim.) in the treatment of RF needs further investigation.
View Article and Find Full Text PDFJ Appl Lab Med
December 2024
Department of Diagnostic Imaging, Division of Diagnostics and Technology, Akershus University Hospital, Lørenskog, Norway.
Background: Myocardial fibrosis is associated with a poor outcome for patients with cardiovascular disease (CVD). Growth differentiation factor 15 (GDF-15) concentrations predict the risk of death in patients with CVD, but the underlying pathophysiological mechanisms are poorly understood. We aimed to assess the associations between biomarkers of cellular stress and inflammation (GDF-15), cardiac injury (cardiac troponin T [cTnT]), and stretch (N-terminal pro-B-type natriuretic peptide [NT-proBNP]), and subsequent focal and diffuse myocardial fibrosis assessed by cardiac magnetic resonance (CMR) imaging.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China. Electronic address:
Ethnopharmacological Relevance: Huangkui capsule (HKC), a patent traditional Chinese medicine, has shown significant efficacy in managing chronic kidney disease (CKD), particularly diabetic nephropathy (DN). Previous studies have shown that HKC can alleviate kidney damage in DN. However, the exact mechanisms through which it exerts its effects remain unclear.
View Article and Find Full Text PDFTissue Cell
December 2024
School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Hyderabad 509301, India.
In this study, we investigated the efficacy of oxymatrine, a phytochemical alkaloid, in reducing inflammation and fibrosis in a rat model of IgA nephropathy (IgAN) through modulation of the TGF-β/SMAD signaling pathway. Thirty Sprague Dawley rats were randomized into control, IgAN, and treatment groups, the latter receiving oxymatrine postinduction of IgAN. Induced by bovine serum albumin, carbon tetrachloride, and lipopolysaccharides, the disease model was validated by immunofluorescence and histopathological analyses, confirming significant renal deposition of IgA and increased fibrosis markers (IL-6, TGF-β, SMAD 3, and α-SMA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!