Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Crevice corrosion in modular taper junctions of hip or knee replacements using cobalt-chrome-molybdenum (CoCrMo) alloys remains a clinical concern. Non-mechanically-driven corrosion has been less explored compared to mechanically assisted crevice corrosion. This study hypothesized that solution chemistry within crevices, inflammation, and cathodic electrode potential shifts during fretting result in low pH and generate reactive oxygen species (ROS), affecting oxide film behavior. This study investigated how resistance and capacitance of the CoCrMo oxide film (i.e., corrosion resistance) are modified in simulated in vivo crevice environments of modular taper junctions. Six solutions were evaluated (two pH levels: 1 and 7.4 and four hydrogen peroxide (HO) concentrations: 0, 0.001, 0.01 and 0.1 M). R versus voltage and Mott-Schottky plots were created from symmetry-based electrochemical impedance spectroscopy (sbEIS). At pH 1, the semiconductor transition to p-type occurs at more anodic potentials and higher flat band potentials were found. HO decreased the flat band potential and slope in the Mott-Schottky plot. Higher HO in pH 7.4 solution significantly modified the oxide film, leading to increased donor density (p = 0.0004) and a 150-fold reduction in R in the cathodic potential range at -1 V (p = 0.0005). The most unfavorable condition (0.1 M HO pH 1) resulted in a 250-fold lower resistance compared to phosphate buffered saline (PBS) pH 7.4 at -1 V (p = 0.0013). This study highlights the corrosion susceptibility of CoCrMo under adverse chemical and potential conditions, identifying increased defects in the oxide film due to ROS, hydrogen ions and electrode potential. STATEMENT OF SIGNIFICANCE: Corrosion of cobalt chrome molybdenum alloy caused by direct chemical attack in the crevice region of hip replacements, such as modular taper junctions, remains a clinical concern. The junction environment contains adverse chemical compositions, including high acidity and reactive oxygen species (ROS) due to inflammatory responses against the corrosion products. We simulate inflammatory environments with different pH levels and hydrogen peroxide, representative of ROS. We employ electrochemical impedance spectroscopy and apply stepwise voltage over the range induced by tribocorrosion processes. We relate the effect of adverse chemical components on corrosion and semiconducting behavior of the oxide film using Mott-Schottky analysis. This study shows how pH and ROS concentration compromises the oxide film potentially leading to non-mechanically induced corrosion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2024.08.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!