Exposure to environmental heavy metals may pose a risk factor for developing preeclampsia (PE) modified through intervention. This case-control study aimed to investigate the association between serum heavy metal concentrations and PE in pregnant women and whether hormones served as mediating factors in the impact of heavy metals on PE. From October 2020 to 2022, 160 patients with PE and 160 pregnant women with normal deliveries were recruited at Dongguan Songshan Lake Central Hospital. Serum concentrations of manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), lead (Pb), β-human chorionic gonadotropin (β-hCG), progesterone (P), estradiol (E2), testosterone (T), cortisol (Cort), and cortisone (Cor) were measured. Logistic, restricted cubic splines, weighted quantile sum and multivariate linear regression models were employed to account for different aspects and explore the relationships among heavy metals, hormones, and PE. Mediation model analysis was performed to assess the role of hormones in mediation. The median concentrations of Mn, E2, and Cort were lower in the PE group than in the control group. The median concentrations of Cu, Zn, β-hCG, and T were higher in the PE than in the control. Mn, E2, and Cort showed negative associations with PE, while Cu, Zn, β-hCG, and T demonstrated positive associations, as determined through logistic regression. Mn, Cu, and Zn displayed linear dose-response relationships with PE. Zn and Cu had high weights in the positive association model of mixed heavy metal exposure with PE. The mediation analysis revealed that serum E2, P, T, Cort, and Cort/Cor might be potential mediators of the association between heavy metals (Mn, Cu, and Zn) and PE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.124721 | DOI Listing |
Sci Rep
December 2024
State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China.
Microelectrode arrays (MEAs) have been widely used in studies on the electrophysiological features of neuronal networks. In classic MEA experiments, spike or burst rates and spike waveforms are the primary characteristics used to evaluate the neuronal network excitability. Here, we introduced a new method to assess the excitability using the voltage threshold of electrical stimulation.
View Article and Find Full Text PDFSci Rep
December 2024
Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém, 8200, Hungary.
Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.
View Article and Find Full Text PDFSci Rep
December 2024
OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, 734013, India.
Cadmium, a toxic heavy metal, poses significant global concern. A strain of the genus Pseudomonas, CD3, demonstrating significant cadmium resistance (up to 3 mM CdCl.HO) was identified from a pool of 26 cadmium-resistant bacteria isolated from cadmium-contaminated soil samples from Malda, India.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry G. Ciamician, University of Bologna, Bologna, 40126, Italy.
Gold nanoparticles (AuNPs) and their biocompatible conjugates find wide use as transducers in (bio)sensors and as Nano-pharmaceutics. The study of the interaction between AuNPs and proteins in representative application media helps to better understand their intrinsic behaviors. A multi-environment, multi-parameter screening strategy is proposed based on asymmetric flow field flow fractionation (AF4)-multidetector.
View Article and Find Full Text PDFNat Commun
December 2024
Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!