A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Immunofluorescence-Guided Segmentation Model in Hematoxylin and Eosin Images Is Enabled by Tissue Artifact Correction Using a Cycle-Consistent Generative Adversarial Network. | LitMetric

An Immunofluorescence-Guided Segmentation Model in Hematoxylin and Eosin Images Is Enabled by Tissue Artifact Correction Using a Cycle-Consistent Generative Adversarial Network.

Mod Pathol

Department of Research Pathology, Genentech Inc, South San Francisco, California; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.

Published: November 2024

Despite recent advances, the adoption of computer vision methods into clinical and commercial applications has been hampered by the limited availability of accurate ground truth tissue annotations required to train robust supervised models. Generating such ground truth can be accelerated by annotating tissue molecularly using immunofluorescence (IF) staining and mapping these annotations to a post-IF hematoxylin and eosin (H&E) (terminal H&E) stain. Mapping the annotations between IF and terminal H&E increases both the scale and accuracy by which ground truth could be generated. However, discrepancies between terminal H&E and conventional H&E caused by IF tissue processing have limited this implementation. We sought to overcome this challenge and achieve compatibility between these parallel modalities using synthetic image generation, in which a cycle-consistent generative adversarial network was applied to transfer the appearance of conventional H&E such that it emulates terminal H&E. These synthetic emulations allowed us to train a deep learning model for the segmentation of epithelium in terminal H&E that could be validated against the IF staining of epithelial-based cytokeratins. The combination of this segmentation model with the cycle-consistent generative adversarial network stain transfer model enabled performative epithelium segmentation in conventional H&E images. The approach demonstrates that the training of accurate segmentation models for the breadth of conventional H&E data can be executed free of human expert annotations by leveraging molecular annotation strategies such as IF, so long as the tissue impacts of the molecular annotation protocol are captured by generative models that can be deployed prior to the segmentation process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.modpat.2024.100591DOI Listing

Publication Analysis

Top Keywords

terminal h&e
20
conventional h&e
16
cycle-consistent generative
12
generative adversarial
12
adversarial network
12
ground truth
12
h&e
10
segmentation model
8
hematoxylin eosin
8
mapping annotations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!