Within the scope of this study, two equivalent PM samplers were designed and developed to eliminate sampling artifacts in the results of atmospheric particulate organic carbon (OC) and particulate polycyclic aromatic hydrocarbons (PAH) caused by volatile organic compounds (VOCs) and gas phase PAH compounds, respectively. A mass loss of less than 10% due to the denuders was observed. Study results showed that if an impregnated denuder is not used, the results of atmospheric particle OC concentrations will be reported with higher values due to positive errors of 53.2 ± 7.23% (median: 52.00%) on average. It was observed that the total error (net error) was still positive, but decreased to an average of 35.1 ± 16.8% (median: 31.0%) after including the negative errors quantified from the backup filter into the calculation. In cases where denuders were not used in the sampling, it was observed that the results with positive errors of 41.0 ± 14.6% (median: 33.8%) on average would be obtained for the total PAHs. Ozone-induced negative interference was the highest in Acenapthylene (28%), followed by Fluoranthane (20%), Phenanthrene (18%), and 15% for Np and Benzo[g,h,i]perylene compounds, relative to their medians. Negative errors of 10% or less were found in all other individual PAH compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143089 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!