Design and structure-activity relationships of ether-linked alkylides: Hybrids of 3-O-descladinosyl macrolides and quinolone motifs.

Bioorg Chem

Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China. Electronic address:

Published: October 2024

Ketolides (3-keto) such as TE-802 and acylides (3-O-acyl) like TEA0929 are ineffective against constitutively resistant pathogens harboring erythromycin ribosomal methylation (erm) genes. Following our previous work on alkylides (3-O-alkyl), we explored the structure-activity relationships of hybrids combining (R/S) 3-descladinosyl erythromycin with 6/7-quinolone motifs, featuring extended ether-linked spacers, with a focus on their efficacy against pathogens bearing constitutive erm gene resistance. Optimized compounds 17a and 31f not only reinstated efficacy against inducibly resistant pathogens but also demonstrated significantly augmented activities against constitutively resistant strains of Streptococcus pneumoniae and Streptococcus pyogenes, which are typically refractory to existing C-3 modified macrolides. Notably, hybrid 31f (coded ZN-51) represented a pioneering class of agents distinguished by its dual modes of action, with ribosomes as the primary target and topoisomerases as the secondary target. As a novel chemotype of macrolide-quinolone hybrids, alkylide 31f is a valuable addition to our armamentarium against macrolide-resistant bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2024.107712DOI Listing

Publication Analysis

Top Keywords

structure-activity relationships
8
constitutively resistant
8
resistant pathogens
8
design structure-activity
4
relationships ether-linked
4
ether-linked alkylides
4
alkylides hybrids
4
hybrids 3-o-descladinosyl
4
3-o-descladinosyl macrolides
4
macrolides quinolone
4

Similar Publications

The TOXIN knowledge graph: supporting animal-free risk assessment of cosmetics.

Database (Oxford)

January 2025

Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium.

The European Union's ban on animal testing for cosmetic products and their ingredients, combined with the lack of validated animal-free methods, poses challenges in evaluating their potential repeated-dose organ toxicity. To address this, innovative strategies like Next-Generation Risk Assessment (NGRA) are being explored, integrating historical animal data with new mechanistic insights from non-animal New Approach Methodologies (NAMs). This paper introduces the TOXIN knowledge graph (TOXIN KG), a tool designed to retrieve toxicological information on cosmetic ingredients, with a focus on liver-related data.

View Article and Find Full Text PDF

Enantiomer-Dependent Supramolecular Antibacterial Therapy for Drug-Resistant Bacterial Keratitis.

Langmuir

January 2025

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.

Bacteria have the potential to exhibit divergent stereochemical preferences for different levels of chiral structures, including from molecule, supramolecule, to nanomicroscale helical structure. Accordingly, the structure-activity relationship between chirality and bactericidal activity remains uncertain. In this study, we seek to understand the multivalent molecular chirality effect of chiral supramolecular polymers on antibacterial activity.

View Article and Find Full Text PDF

Platinum(II) complexes prevail as first-line treatment for many cancers but are associated with serious side effects and resistance development. Picoplatin emerged as a promising alternative to circumvent GSH-induced tumor resistance by introducing a bulky 2-picoline ligand. Although clinical studies were encouraging, picoplatin did not receive approval.

View Article and Find Full Text PDF

Transition metal complexes: next-generation photosensitizers for combating Gram-positive bacteria.

Future Med Chem

January 2025

Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R., China.

The rise of antibiotic-resistant Gram-positive bacterial infections poses a significant threat to public health, necessitating the exploration of alternative therapeutic strategies. A photosensitizer (PS) can convert energy from absorbed photon into reactive oxygen species (ROS) for damaging bacteria. This photoinactivation action bypassing conventional antibiotic mechanism is less prone to resistance development, making antibacterial photodynamic therapy (aPDT) highly efficient in combating Gram-positive bacteria.

View Article and Find Full Text PDF

A range of heterocyclic compounds, including Isatin (oneH-indole-2, 3-dione) and its by-products, have been shown to represent potential unit blocks in the synthesis of potential medicinal agents. Numerous studies have been carried out on isatin, its synthesis, biological uses, and its chemical composition since when it was discovered. Functionally, these isatin-containing heterocycles have demonstrated antibacterial, antidiabetic, antiviral, antitubercular, and anticancer properties, among many others.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!