Smartphone as an alternative to measure chlorophyll-a concentration in small waterbodies.

J Environ Manage

Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:

Published: September 2024

Monitoring chlorophyll-a concentrations (Chl-a, μg·L) in aquatic ecosystems has attracted much attention due to its direct link to harmful algal blooms. However, there has been a lack of a cost-effective method for measuring Chl-a in small waterbodies. Inspired by the increase of smartphone photography, a Smartphone-based convolutional neural networks (CNN) framework (SCCA) was developed to estimate Chl-a in Aquatic ecosystem. To evaluate the performance of SCCA, 238 paired records (a smartphone image with a 12-color background and a measured Chl-a value) were collected from diverse aquatic ecosystems (e.g., rivers, lakes and ponds) across China in 2023. Our performance-evaluation results revealed a NS and R value of 0.90 and 0.94 in Chl-a estimation, demonstrating a satisfactory (NS = 0.84, R = 0.86) model fit in lower Chl-a (<30 μg L) conditions. SCCA had involved a realtime-update method with hyperparameter optimization technology. In comparison with the existing methods of measuring Chl-a, SCCA provides a useful screening tool for cost-effective measurement of Chl-a and has the potential for being an algal bloom screening means in small waterbodies, using Huajin River as a case study, especially under limited resources for water measurement. Overall, we highlight that the SCCA can be potentially integrated into a smartphone application in the future to diverse waterbodies in environmental management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.122135DOI Listing

Publication Analysis

Top Keywords

small waterbodies
8
aquatic ecosystems
8
chl-a
6
smartphone alternative
4
alternative measure
4
measure chlorophyll-a
4
chlorophyll-a concentration
4
concentration small
4
waterbodies monitoring
4
monitoring chlorophyll-a
4

Similar Publications

Biotic factors shape the structure and dynamics of denitrifying communities within cyanobacterial aggregates.

Environ Res

January 2025

Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China; Center for Global Change and Ecological Forecasting, Institute of Eco-Chongming, Shanghai, China. Electronic address:

Eutrophication caused by human activities has severely impacted freshwater ecosystems, leading to harmful cyanobacterial blooms that threaten water quality and ecosystem stability. During blooms, denitrification is a key process for nitrogen removal, which can occur both in the sediment and in the waterbody mediated by cyanobacterial aggregate (CA)-associated microorganisms. In this study, the structure, dynamics and assembly mechanisms of CA-associated nirK-, nirS-, and nosZ-encoding denitrifying communities were investigated in the eutrophic Lake Taihu across the bloom season.

View Article and Find Full Text PDF

How efficient are pre-dams as reservoir guardians? A long-term study on nutrient retention.

Water Res

November 2024

Department of Lake Research, Helmholtz Center for Environmental Research - UFZ, Brückstraße 3A, 39114 Magdeburg, Germany; Faculty Environment and Natural Sciences, Brandenburg University of Technology, Cottbus, Germany. Electronic address:

Assessing nutrient loading and processing is crucial for water quality management in lakes and reservoirs. Quantifying and reducing external nutrient inputs in these systems remains a significant challenge. The difficulty arises from low monitoring frequencies of the highly dynamic external inputs and the limited availability of measures to reduce diffuse source loading.

View Article and Find Full Text PDF

Stormwater is recognised as a vector for microplastics (MPs), including tyre wear particles (TWPs) from land-based sources to receiving waterbodies. Before reaching the waterbodies, the stormwater may be treated. In this study, sediments from six treatment facilities (five retention ponds and a subsurface sedimentation tank) were analysed to understand MP occurrence, concentrations, sizes, polymer types and distribution between inlet and outlet.

View Article and Find Full Text PDF

Outdoor farming contributes to biodiversity conservation and enhances animal welfare, but also raises biosafety concerns due to livestock contact with potentially infected wildlife. Thus, there is a need to assess the balance between vertebrate species richness on farms, visits by wildlife species posing a biosafety risk, and pathogen circulation in open-air farming systems. We explored these links in a pilot study involving 15 open-air hoofstock farms (6 cattle, 5 small ruminant, and 4 pig farms), where we conducted interviews and risk point inspections and used two noninvasive tools: short-term camera trap (CT) deployment and environmental nucleic acid detection (ENAD).

View Article and Find Full Text PDF

Microplastic (MP) pollution in agricultural ecosystems is an emerging environmental concern, with limited knowledge of its transport and accumulation in rural waterbodies. This study investigates the distribution and sources of MP in drainage ditches influenced by pond connectivity, land use, and soil properties within a small catchment in Nanjing, East China. Sediment was collected from ditches in 18 sites across forest, agricultural, horticultural, and urban areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!