Objectives: Lung ultrasound reduces the number of chest X-rays after thoracic surgery and thus the radiation. COVID-19 pandemic has accelerated research in lung ultrasound artifacts detection using artificial intelligence. This study evaluates the accuracy of artificial intelligence in A-lines detection in thoracic surgery patients using a novel hybrid solution that combines convolutional neural networks and analytical approach and compares it with a radiology resident and radiology experts' results.

Design: Prospective observational study.

Material And Methods: Single-center study evaluates the accuracy of artificial intelligence and a radiology resident in A-line detection on lung ultrasound footages compared with the consensual opinion of two expert radiologists as the reference. After resident's first reading, the artificial intelligence results were presented to the resident and he was asked to revise the results based on artificial intelligence.

Results: 82 consecutive patients underwent 82 ultrasound examinations. 328 ultrasound recordings were evaluated. Accuracy, sensitivity, specificity, positive and negative predictive values of artificial inelligence in A-line detection were 0.866, 0.928, 0.834, 0.741 and 0.958 respectively. The resident's values were 0.558, 0.973, 0.346, 0.432 and 0.962 respectively. The resident's values after correction based on artificial intelligence results were 0.854, 0.991, 0.783, 0.701 and 0.994 respectively.

Conclusion: Artificial intelligence showed high accuracy in A-line detection in thoracic surgery patients and was more accurate compared to a resident. Artificial intelligence could play important role in lung ultrasound artifact detection in thoracic surgery patients and in residents' education.

Download full-text PDF

Source

Publication Analysis

Top Keywords

artificial intelligence
32
lung ultrasound
20
thoracic surgery
20
surgery patients
16
radiology resident
12
detection thoracic
12
a-line detection
12
artificial
9
intelligence
8
convolutional neural
8

Similar Publications

Objective: This study evaluated ResNet-50 and U-Net models for detecting and segmenting vertical misfit in dental implant crowns using periapical radiographic images.

Methods: Periapical radiographs of dental implant crowns were classified by two experts based on the presence of vertical misfit (reference group). The misfit area was manually annotated in images exhibiting vertical misfit.

View Article and Find Full Text PDF

The human visual nervous system excels at recognizing and processing external stimuli, essential for various physiological functions. Biomimetic visual systems leverage biological synapse properties to improve memory encoding and perception. Optoelectronic devices mimicking these synapses can enhance wearable electronics, with layered heterojunction materials being ideal materials for optoelectronic synapses due to their tunable properties and biocompatibility.

View Article and Find Full Text PDF

Stimuli-Responsive Nano Drug Delivery Systems for the Treatment of Neurological Diseases.

Small

January 2025

Molecular Imaging Center, National Center for Drug Screening, Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.

Nanomaterials with unparalleled physical and chemical attributes have become a cornerstone in the field of nanomedicine delivery. These materials can be engineered into various functionalized nanocarriers, which have become the focus of research. Stimulus-responsive nanodrug delivery systems (SRDDS) stand out as a sophisticated class of nanocarriers that can release drugs in response to environmental cues.

View Article and Find Full Text PDF

Terrestrial vegetation is a key component of the Earth system, regulating the exchange of carbon, water, and energy between land and atmosphere. Vegetation affects soil moisture dynamics by absorbing and transpiring soil water, thus modulating land-atmosphere interactions. Moreover, changes in vegetation structure (e.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) frequently metastasizes to the brain, significantly worsened prognoses. This study aimed to develop an interpretable model for predicting survival in NSCLC patients with brain metastases (BM) integrating radiomic features and RNA sequencing data. 292 samples are collected and analyzed utilizing T1/T2 MRIs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!