Amid the growing concern for health-oriented food choices, salt reduction has received widespread attention, particularly in the exploitation of salt alternatives. Peptides with a saltiness-enhancing effect may provide an alternative method for salt reduction. The objective of this study was to isolate and extract novel peptides with salt-reducing effects by fermenting goose blood using a strain. Five potential target peptides were screened by a virtual database prediction and molecular docking. Sensory evaluation and E-tongue analysis showed that five peptides (NEALQRM, GDAVKNLD, HAYNLRVD, PEMHAAFDK, and AEEKQLITGL) were identified as target peptides. Particularly, the results of E-tongue showed that GDAVKNLD can increase the saltiness intensity (2.87 ± 0.02) in the complex system. The sensory evaluation results also indicated an increase in saltiness intensity (46.67 ± 4.67 mmol/L NaCl) after adding GDAVKNLD. The results of molecular dynamics simulation indicated that five peptides have good ability to bind tightly to TMC4 receptor, thereby stimulating it to exert an active effect. And these peptides interacted with the TMC4 receptor via hydrogen bonding, hydrophobic interactions, and electrostatic interactions. This research lays a theoretical foundation for discovering novel salty/saltiness-enhancing peptides and provides meaningful contributions to efforts in salt reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c02437DOI Listing

Publication Analysis

Top Keywords

tmc4 receptor
12
salt reduction
12
peptides
9
salty/saltiness-enhancing peptides
8
target peptides
8
sensory evaluation
8
increase saltiness
8
saltiness intensity
8
decoding salty/saltiness-enhancing
4
peptides derived
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!