Proteins are essential for human tissues and organs, and they require adequate intake for normal physiological functions. With a growing global population, protein demand rises annually. Traditional animal and plant protein sources rely heavily on land and water, making it difficult to meet the increasing demand. The high protein content of yeast and the complete range of amino acids in yeast proteins make it a high-quality source of supplemental protein. Screening of high-protein yeast strains using proteomics is essential to increase the value of yeast protein resources and to promote the yeast protein industry. However, current yeast extraction methods are mainly alkaline solubilization and acid precipitation; therefore, it is necessary to develop more efficient and environmentally friendly techniques. In addition, the functional properties of yeast proteins limit their application in the food industry. To improve these properties, methods must be selected to modify the secondary and tertiary structures of yeast proteins. This paper explores how proteomic analysis can be used to identify nutrient-rich yeast strains, compares the process of preparing yeast proteins, and investigates how modification methods affect the function and structure of yeast proteins. It provides a theoretical basis for solving the problem of inadequate protein intake in China and explores future prospects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.4c04821 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!