Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High conversion ratio dc-dc converters have received significant attention in renewable energy systems, primarily due to their necessary high-gain characteristics. This research proposes a high step-up ratio full-bridge resonant cascaded (FBRC) dc-dc converter designed for use in photovoltaics (PV), fuel cells (FC), electric vehicles (EV), and other low-voltage output energy sectors to achieve high voltage gain. This converter contains a full-bridge cell with a boost input inductor, a diode-capacitor cascaded stage that replaces the transformer as a voltage multiplier and an inductor-capacitor (LC) parallel-series resonant network across the FB terminal. One of the strategic features of the converter is its high voltage step-up characteristic combined with lower duty cycle operation that limits the maximum current through the active devices, making it particularly suitable for systems that generate low output voltage. In addition, zero-voltage switching (ZVS) is achieved during the turn-off and turn-on operation of the FB switches from 25% to full load, thereby lessening the switching losses. Moreover, the diminished necessity for passive components and the decreased voltage stress on both active and passive devices lead to the use of smaller and more cost-effective components. The theoretical analysis of the proposed converter is validated using a 500 W laboratory-scale prototype wherein high-performance SiC-based MOSFETs have been utilized as switching devices. It offers reduced ripples, with input current ripple at 5% and output voltage ripple at 0.76%. When the load is 400 W and 60 V as the input voltage, the maximum efficiency is found 95.8% at 400 V output voltage. The proposed dc-dc converter, with its high voltage gain and reduced component stress, shows significant promise for application in renewable energy systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11326612 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306906 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!